Skip to main content
Top

2020 | OriginalPaper | Chapter

A Compressive Spectral Collocation Method for the Diffusion Equation Under the Restricted Isometry Property

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a compressive spectral collocation method for the numerical approximation of Partial Differential Equations (PDEs). The approach is based on a spectral Sturm-Liouville approximation of the solution and on the collocation of the PDE in strong form at randomized points, by taking advantage of the compressive sensing principle. The proposed approach makes use of a number of collocation points substantially less than the number of basis functions when the solution to recover is sparse or compressible. Focusing on the case of the diffusion equation, we prove that, under suitable assumptions on the diffusion coefficient, the matrix associated with the compressive spectral collocation approach satisfies the restricted isometry property of compressive sensing with high probability. Moreover, we demonstrate the ability of the proposed method to reduce the computational cost associated with the corresponding full spectral collocation approach while preserving good accuracy through numerical illustrations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The substantial independence of the OMP recovery cost with respect to s for the full approach depends on two factors: the particular implementation of OMP in the package OMP-Box and the normalization step \(\widetilde {A} = A M^{-1}\) in Algorithm 1. In fact, in order to speed up the OMP iteration, the function omp of OMP-Box used to produce these results takes \(\widetilde {A}^T\widetilde {A}\) as input. When A is N × N, the cost of computing the matrices \(\widetilde {A}\) and \(\widetilde {A}^T\widetilde {A}\) is independent of s and it turns out to be consistently larger than the cost of OMP itself. As a result, the effect of s on the overall computational cost is negligible. The same remark holds for Fig. 4.
 
Literature
1.
2.
3.
go back to reference Adcock, B., Brugiapaglia, S., Webster, C.G.: Compressed sensing approaches for polynomial approximation of high-dimensional functions. In: Compressed Sensing and its Applications, pp. 93–124. Springer, Cham (2017) Adcock, B., Brugiapaglia, S., Webster, C.G.: Compressed sensing approaches for polynomial approximation of high-dimensional functions. In: Compressed Sensing and its Applications, pp. 93–124. Springer, Cham (2017)
4.
go back to reference Alberti, G.S., Santacesaria, M.: Infinite dimensional compressed sensing from anisotropic measurements (2017). Preprint. arXiv:1710.11093 Alberti, G.S., Santacesaria, M.: Infinite dimensional compressed sensing from anisotropic measurements (2017). Preprint. arXiv:1710.11093
5.
go back to reference Bouchot, J.-L., Rauhut, H., Schwab, C.: Multi-level compressed sensing Petrov-Galerkin discretization of high-dimensional parametric PDEs (2017). Preprint. arXiv:1701.01671 Bouchot, J.-L., Rauhut, H., Schwab, C.: Multi-level compressed sensing Petrov-Galerkin discretization of high-dimensional parametric PDEs (2017). Preprint. arXiv:1701.01671
6.
go back to reference Brugiapaglia, S.: COmpRessed SolvING: sparse approximation of PDEs based on compressed sensing. PhD thesis, Politecnico di Milano, Italy (2016) Brugiapaglia, S.: COmpRessed SolvING: sparse approximation of PDEs based on compressed sensing. PhD thesis, Politecnico di Milano, Italy (2016)
7.
go back to reference Brugiapaglia, S., Micheletti, S., Perotto, S.: Compressed solving: a numerical approximation technique for elliptic PDEs based on compressed sensing. Comput. Math. Appl. 70(6), 1306–1335 (2015)MathSciNetCrossRef Brugiapaglia, S., Micheletti, S., Perotto, S.: Compressed solving: a numerical approximation technique for elliptic PDEs based on compressed sensing. Comput. Math. Appl. 70(6), 1306–1335 (2015)MathSciNetCrossRef
8.
go back to reference Brugiapaglia, S., Nobile, F., Micheletti, S., Perotto, S.: A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems. Math. Comput. 87(309), 1–38 (2018)MathSciNetMATHCrossRef Brugiapaglia, S., Nobile, F., Micheletti, S., Perotto, S.: A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems. Math. Comput. 87(309), 1–38 (2018)MathSciNetMATHCrossRef
9.
go back to reference Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetMATHCrossRef Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetMATHCrossRef
10.
go back to reference Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Zhang, T.A.: Spectral Methods in Fluid Dynamics. Springer Science & Business Media, New York (2012) Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Zhang, T.A.: Spectral Methods in Fluid Dynamics. Springer Science & Business Media, New York (2012)
11.
go back to reference Chkifa, A., Dexter, N., Tran, H., Webster, C.G.: Polynomial approximation via compressed sensing of high-dimensional functions on lower sets. Math. Comput. 87(311), 1415 (2018)MathSciNetMATHCrossRef Chkifa, A., Dexter, N., Tran, H., Webster, C.G.: Polynomial approximation via compressed sensing of high-dimensional functions on lower sets. Math. Comput. 87(311), 1415 (2018)MathSciNetMATHCrossRef
12.
go back to reference Daubechies, I., Runborg, O., Zou, J.: A sparse spectral method for homogenization multiscale problems. Multiscale Model. Simul. 6(3), 711–740 (2007)MathSciNetMATHCrossRef Daubechies, I., Runborg, O., Zou, J.: A sparse spectral method for homogenization multiscale problems. Multiscale Model. Simul. 6(3), 711–740 (2007)MathSciNetMATHCrossRef
14.
go back to reference Doostan, A., Owhadi, H.: A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)MathSciNetMATHCrossRef Doostan, A., Owhadi, H.: A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)MathSciNetMATHCrossRef
15.
go back to reference Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel (2013) Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel (2013)
16.
go back to reference Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26. SIAM, Philadelphia (1977)MATHCrossRef Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26. SIAM, Philadelphia (1977)MATHCrossRef
17.
18.
go back to reference Guermond, J.-L., Popov, B.: An optimal L 1-minimization algorithm for stationary Hamilton-Jacobi equations. Commun. Math. Sci. 7(1), 211–238 (2009)MathSciNetMATHCrossRef Guermond, J.-L., Popov, B.: An optimal L 1-minimization algorithm for stationary Hamilton-Jacobi equations. Commun. Math. Sci. 7(1), 211–238 (2009)MathSciNetMATHCrossRef
19.
go back to reference Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation I: modified Fourier expansions. IMA J. Numer. Anal. 28(4), 862–887 (2008)MathSciNetMATHCrossRef Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation I: modified Fourier expansions. IMA J. Numer. Anal. 28(4), 862–887 (2008)MathSciNetMATHCrossRef
20.
go back to reference Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation III: multivariate expansions. IMA J. Numer. Anal. 29(4), 882–916 (2009)MathSciNetMATHCrossRef Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation III: multivariate expansions. IMA J. Numer. Anal. 29(4), 882–916 (2009)MathSciNetMATHCrossRef
21.
go back to reference Jokar, S., Mehrmann, V., Pfetsch, M.E., Yserentant, H.: Sparse approximate solution of partial differential equations. Appl. Numer. Math. 60(4), 452–472 (2010). Special Issue: NUMAN 2008 Jokar, S., Mehrmann, V., Pfetsch, M.E., Yserentant, H.: Sparse approximate solution of partial differential equations. Appl. Numer. Math. 60(4), 452–472 (2010). Special Issue: NUMAN 2008
22.
go back to reference Krahmer, F., Ward, R.: Stable and robust sampling strategies for compressive imaging. IEEE Trans. Image Process. 23(2), 612–622 (2014)MathSciNetMATHCrossRef Krahmer, F., Ward, R.: Stable and robust sampling strategies for compressive imaging. IEEE Trans. Image Process. 23(2), 612–622 (2014)MathSciNetMATHCrossRef
23.
go back to reference Lavery, J.E.: Nonoscillatory solution of the steady-state inviscid Burgers’ equation by mathematical programming. J. Comput. Phys. 79(2), 436–448 (1988)MathSciNetMATHCrossRef Lavery, J.E.: Nonoscillatory solution of the steady-state inviscid Burgers’ equation by mathematical programming. J. Comput. Phys. 79(2), 436–448 (1988)MathSciNetMATHCrossRef
24.
go back to reference Lavery, J.E.: Solution of steady-state one-dimensional conservation laws by mathematical programming. SIAM J. Numer. Anal. 26(5), 1081–1089 (1989)MathSciNetMATHCrossRef Lavery, J.E.: Solution of steady-state one-dimensional conservation laws by mathematical programming. SIAM J. Numer. Anal. 26(5), 1081–1089 (1989)MathSciNetMATHCrossRef
25.
26.
go back to reference Mathelin, L., Gallivan, K.A.: A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12(4), 919–954 (2012)MathSciNetMATHCrossRef Mathelin, L., Gallivan, K.A.: A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12(4), 919–954 (2012)MathSciNetMATHCrossRef
27.
go back to reference Peng, J., Hampton, J., Doostan, A.: A weighted ℓ 1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267, 92–111 (2014)MathSciNetMATHCrossRef Peng, J., Hampton, J., Doostan, A.: A weighted 1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267, 92–111 (2014)MathSciNetMATHCrossRef
28.
go back to reference Rauhut, H., Schwab, C.: Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comput. 86(304), 661–700 (2017)MathSciNetMATHCrossRef Rauhut, H., Schwab, C.: Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comput. 86(304), 661–700 (2017)MathSciNetMATHCrossRef
29.
go back to reference Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical report, Computer Science Department, Technion (2008) Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical report, Computer Science Department, Technion (2008)
30.
go back to reference Schaeffer, H., Caflisch, R., Hauck, C.D., Osher, S.: Sparse dynamics for partial differential equations. Proc. Natl. Acad. Sci. 110(17), 6634–6639 (2013)MathSciNetMATHCrossRef Schaeffer, H., Caflisch, R., Hauck, C.D., Osher, S.: Sparse dynamics for partial differential equations. Proc. Natl. Acad. Sci. 110(17), 6634–6639 (2013)MathSciNetMATHCrossRef
32.
go back to reference Tran, G., Ward, R.: Exact recovery of chaotic systems from highly corrupted data. Multiscale Model. Simul. 15(3), 1108–1129 (2017)MathSciNetCrossRef Tran, G., Ward, R.: Exact recovery of chaotic systems from highly corrupted data. Multiscale Model. Simul. 15(3), 1108–1129 (2017)MathSciNetCrossRef
33.
go back to reference Yang, X., Karniadakis, G.E.: Reweighted ℓ 1 minimization method for stochastic elliptic differential equations. J. Comput. Phys. 248, 87–108 (2013)MATHCrossRef Yang, X., Karniadakis, G.E.: Reweighted 1 minimization method for stochastic elliptic differential equations. J. Comput. Phys. 248, 87–108 (2013)MATHCrossRef
34.
Metadata
Title
A Compressive Spectral Collocation Method for the Diffusion Equation Under the Restricted Isometry Property
Author
Simone Brugiapaglia
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-48721-8_2

Premium Partner