Skip to main content
Top
Published in: Pattern Recognition and Image Analysis 3/2019

01-07-2019 | APPLIED PROBLEMS

A Computational Approach to Pertinent Feature Extraction for Diagnosis of Melanoma Skin Lesion

Authors: Sharmin Majumder, Muhammad Ahsan Ullah

Published in: Pattern Recognition and Image Analysis | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Melanoma, starts growing in melanocytes, is less common but more serious and aggressive than any other types of skin cancers found in human. Melanoma skin cancer can be completely curable if it is diagnosed and treated in an early stage. Biopsy is a confirmation test of melanoma skin cancer which is invasive, time consuming, costly and painful. To prevent this problem, research regarding computerized analysis of skin cancer from dermoscopy images has become increasingly popular for last few years. In this research, we extract the pertinent features from dermoscopy images related to shape, size and color properties based on ABCD rule. Although ABCD features were used before, these features were mostly calculated to reflect asymmetry, compactness index as border irregularity, color variegation and average diameter. This paper proposes one asymmetry feature, three border irregularity features, one color feature and two diameter features as distinctive and pertinent. Implementation of our approach indicates that each of these proposed features is able to detect melanoma lesions with over 72% accuracy individually and the overall diagnostic system achieves 98% classification accuracy with 97.5% sensitivity and 98.75% specificity. Therefore, this method could assist dermatologist for making decision clinically.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Trovitch, A. Gupte, and K. Ciftci, “Early detection and treatment of skin cancer,” Turk. J. Cancer 32 (4), 129–137 (2002). P. Trovitch, A. Gupte, and K. Ciftci, “Early detection and treatment of skin cancer,” Turk. J. Cancer 32 (4), 129–137 (2002).
2.
go back to reference American Cancer Society, “Melanoma Skin Cancer” [Online]. Available: https://www.cancer.org/cancer/melanoma-skin-cancer. [Accessed: 25-Jun-2018]. American Cancer Society, “Melanoma Skin Cancer” [Online]. Available: https://​www.​cancer.​org/​cancer/​melanoma-skin-cancer.​ [Accessed: 25-Jun-2018].
3.
go back to reference H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic accuracy of dermoscopy,” Lancet Oncol. 3 (3), 159–165 (2002).CrossRef H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic accuracy of dermoscopy,” Lancet Oncol. 3 (3), 159–165 (2002).CrossRef
4.
go back to reference Canadian Dermatology Association, “Melanoma” [Online]. Available: https://dermatology.ca/public-patients/skin/melanoma. [Accessed: 11-Jun-2018]. Canadian Dermatology Association, “Melanoma” [Online]. Available: https://​dermatology.​ca/​public-patients/​skin/​melanoma.​ [Accessed: 11-Jun-2018].
5.
go back to reference N. Razmjooy, B. Somayeh Mousavi, F. Soleymani, and M. Hosseini Khotbesara, “A computer-aided diagnosis system for malignant melanomas,” Neural Comput. Appl. 23 (7–8), 2059–2071 (2013).CrossRef N. Razmjooy, B. Somayeh Mousavi, F. Soleymani, and M. Hosseini Khotbesara, “A computer-aided diagnosis system for malignant melanomas,” Neural Comput. Appl. 23 (7–8), 2059–2071 (2013).CrossRef
6.
go back to reference T. Lee, V. Ng, R. Gallagher, A. Coldman, and D. McLean, “Dullrazor: A software approach to hair removal from images,” Comput. Biol. Med. 27 (6), 533–543 (1997).CrossRef T. Lee, V. Ng, R. Gallagher, A. Coldman, and D. McLean, “Dullrazor: A software approach to hair removal from images,” Comput. Biol. Med. 27 (6), 533–543 (1997).CrossRef
7.
go back to reference R. Sumithra, M. Suhil, and D. S. Guru, “Segmentation and classification of skin lesions for disease diagnosis,” Procedia Comput. Sci. 45, 76–85 (2015).CrossRef R. Sumithra, M. Suhil, and D. S. Guru, “Segmentation and classification of skin lesions for disease diagnosis,” Procedia Comput. Sci. 45, 76–85 (2015).CrossRef
8.
go back to reference A. Wong, J. Scharcanski, and P. Fieguth, “Automatic skin lesion segmentation via iterative stochastic region merging,” IEEE Trans. Inf. Technol. Biomed. 15 (6), 929–936 (2011).CrossRef A. Wong, J. Scharcanski, and P. Fieguth, “Automatic skin lesion segmentation via iterative stochastic region merging,” IEEE Trans. Inf. Technol. Biomed. 15 (6), 929–936 (2011).CrossRef
9.
go back to reference Md. M. Rahman, P. Bhattacharya, and B. C. Desai, “A multiple expert-based melanoma recognition system for dermoscopic images of pigmented skin lesions,” in Proc. 8th IEEE Int. Conf. on BioInformatics and BioEngineering (BIBE 2008) (Athens, Greece, 2008), IEEE, pp. 1–6. Md. M. Rahman, P. Bhattacharya, and B. C. Desai, “A multiple expert-based melanoma recognition system for dermoscopic images of pigmented skin lesions,” in Proc. 8th IEEE Int. Conf. on BioInformatics and BioEngineering (BIBE 2008) (Athens, Greece, 2008), IEEE, pp. 1–6.
10.
go back to reference H. Zhou, G. Schaefer, A. H. Sadka, and M. E. Celebi, “Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images,” IEEE J. Sel. Top. Signal Process. 3 (1), 26–34 (2009).CrossRef H. Zhou, G. Schaefer, A. H. Sadka, and M. E. Celebi, “Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images,” IEEE J. Sel. Top. Signal Process. 3 (1), 26–34 (2009).CrossRef
11.
go back to reference T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10 (2), 266–277 (2001).CrossRefMATH T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10 (2), 266–277 (2001).CrossRefMATH
12.
go back to reference A. B. Cognetta, T. Vogt, M. Landthaler, O. Braun-Falco, and G. Plewig, “The ABCD rule of dermatoscopy: High prospective value in the diagnosis of doubtful melanocytic skin lesions,” J. Am. Acad. Dermatol. 30 (4), 551–559 (1994).CrossRef A. B. Cognetta, T. Vogt, M. Landthaler, O. Braun-Falco, and G. Plewig, “The ABCD rule of dermatoscopy: High prospective value in the diagnosis of doubtful melanocytic skin lesions,” J. Am. Acad. Dermatol. 30 (4), 551–559 (1994).CrossRef
13.
go back to reference N. R. Abbasi, et al., “Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria,” J. Am. Med. Assoc. 292 (22), 2771–2776 (2004).CrossRef N. R. Abbasi, et al., “Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria,” J. Am. Med. Assoc. 292 (22), 2771–2776 (2004).CrossRef
14.
go back to reference I. Zalaudek, et al., “Three-point checklist of dermoscopy: An open internet study,” Br. J. Dermatol. 154 (3), 431–437 (2006).CrossRef I. Zalaudek, et al., “Three-point checklist of dermoscopy: An open internet study,” Br. J. Dermatol. 154 (3), 431–437 (2006).CrossRef
15.
go back to reference J. S. Henning, et al., “The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy,” J. Am. Acad. Dermatol. 56 (1), 45–52 (2007).CrossRef J. S. Henning, et al., “The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy,” J. Am. Acad. Dermatol. 56 (1), 45–52 (2007).CrossRef
16.
go back to reference Y. Chang, R. J. Stanley, R. H. Moss, and W. Van Stoecker, “A systematic heuristic approach for feature selection for melanoma discrimination using clinical images,” Skin Res. Technol. 11 (3), 165–178 (2005).CrossRef Y. Chang, R. J. Stanley, R. H. Moss, and W. Van Stoecker, “A systematic heuristic approach for feature selection for melanoma discrimination using clinical images,” Skin Res. Technol. 11 (3), 165–178 (2005).CrossRef
17.
go back to reference Z. She, Y. Liu, and A. Damatoa, “Combination of features from skin pattern and ABCD analysis for lesion classification,” Skin Res. Technol. 13 (1), 25–33 (2007).CrossRef Z. She, Y. Liu, and A. Damatoa, “Combination of features from skin pattern and ABCD analysis for lesion classification,” Skin Res. Technol. 13 (1), 25–33 (2007).CrossRef
18.
go back to reference P. G. Cavalcanti and J. Scharcanski, “Macroscopic pigmented skin lesion segmentation and its influence on lesion classification and diagnosis,” in Color Medical Image Analysis, Ed. by M. Celebi and G. Schaefer, Lecture Notes in Computational Vision and Biomechanics (Springer, Dordrecht, 2013), Vol. 6, pp. 15–39. P. G. Cavalcanti and J. Scharcanski, “Macroscopic pigmented skin lesion segmentation and its influence on lesion classification and diagnosis,” in Color Medical Image Analysis, Ed. by M. Celebi and G. Schaefer, Lecture Notes in Computational Vision and Biomechanics (Springer, Dordrecht, 2013), Vol. 6, pp. 15–39.
19.
go back to reference R. LeAnder, P. Chindam, M. Das, and S. E. Umbaugh, “Differentiation of melanoma from benign mimics using the relative-color method,” Skin Res. Technol. 16 (3), 297–304 (2010). R. LeAnder, P. Chindam, M. Das, and S. E. Umbaugh, “Differentiation of melanoma from benign mimics using the relative-color method,” Skin Res. Technol. 16 (3), 297–304 (2010).
20.
go back to reference A. H. AlAsadi and B. M. Al-Safy, “Early detection and classification of melanoma skin cancer,” Int. J. Inf. Technol. Comput. Sci. 7 (12), 67–74 (2015). A. H. AlAsadi and B. M. Al-Safy, “Early detection and classification of melanoma skin cancer,” Int. J. Inf. Technol. Comput. Sci. 7 (12), 67–74 (2015).
21.
go back to reference M. Rastgoo, R. Garcia, O. Morel, and F. Marzani, “Automatic differentiation of melanoma from dysplastic nevi,” Comput. Med. Imaging Graphics 43, 44–52 (2015).CrossRef M. Rastgoo, R. Garcia, O. Morel, and F. Marzani, “Automatic differentiation of melanoma from dysplastic nevi,” Comput. Med. Imaging Graphics 43, 44–52 (2015).CrossRef
22.
go back to reference K. Mokrani and R. Kasmi, “Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule,” IET Image Process. 10 (6), 448–455 (2016).CrossRef K. Mokrani and R. Kasmi, “Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule,” IET Image Process. 10 (6), 448–455 (2016).CrossRef
23.
go back to reference L. K. Ferris, et al., “Computer-aided classification of melanocytic lesions using dermoscopic images,” J. Am. Acad. Dermatol. 73 (5), 769–776 (2015).CrossRef L. K. Ferris, et al., “Computer-aided classification of melanocytic lesions using dermoscopic images,” J. Am. Acad. Dermatol. 73 (5), 769–776 (2015).CrossRef
24.
go back to reference M. A. Sheha, M. S. Mabrouk, and A. Sharawy, “Automatic detection of melanoma skin cancer using texture analysis,” Int. J. Comput. Appl. 42 (20), 22–26 (2012). M. A. Sheha, M. S. Mabrouk, and A. Sharawy, “Automatic detection of melanoma skin cancer using texture analysis,” Int. J. Comput. Appl. 42 (20), 22–26 (2012).
25.
go back to reference J. Jaworek-Korjakowska, “Computer-aided diagnosis of micro-malignant melanoma lesions applying Support Vector Machines,” BioMed Res. Int. 2016, Article ID 4381972, 8 pages (2016). J. Jaworek-Korjakowska, “Computer-aided diagnosis of micro-malignant melanoma lesions applying Support Vector Machines,” BioMed Res. Int. 2016, Article ID 4381972, 8 pages (2016).
26.
go back to reference R. Garnavi, M. Aldeen, and J. Bailey, “Computer-aided diagnosis of melanoma using border- and wavelet-based texture analysis,” IEEE Trans. Inf. Technol. Biomed. 16 (6), 1239–1252 (2012).CrossRef R. Garnavi, M. Aldeen, and J. Bailey, “Computer-aided diagnosis of melanoma using border- and wavelet-based texture analysis,” IEEE Trans. Inf. Technol. Biomed. 16 (6), 1239–1252 (2012).CrossRef
27.
go back to reference H. Iyatomi, et al., “An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm,” Comput. Med. Imaging Graphics 32 (7), 566–579 (2008).CrossRef H. Iyatomi, et al., “An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm,” Comput. Med. Imaging Graphics 32 (7), 566–579 (2008).CrossRef
28.
go back to reference I. Maglogiannis and C. N. Doukas, “Overview of advanced computer vision systems for skin lesions characterization,” IEEE Trans. Inf. Technol. Biomed. 13 (5), 721–733 (2009).CrossRef I. Maglogiannis and C. N. Doukas, “Overview of advanced computer vision systems for skin lesions characterization,” IEEE Trans. Inf. Technol. Biomed. 13 (5), 721–733 (2009).CrossRef
29.
go back to reference K. M. Clawson, P. Morrow, B. Scotney, J. McKenna, and O. Dolan, “Analysis of pigmented skin lesion border irregularity using the harmonic wavelet transform,” in Proc. 2009 13th International Machine Vision and Image Processing Conference (IMVIP 2009) (Dublin, Ireland, 2009), IEEE, pp. 18–23. K. M. Clawson, P. Morrow, B. Scotney, J. McKenna, and O. Dolan, “Analysis of pigmented skin lesion border irregularity using the harmonic wavelet transform,” in Proc. 2009 13th International Machine Vision and Image Processing Conference (IMVIP 2009) (Dublin, Ireland, 2009), IEEE, pp. 18–23.
30.
go back to reference M. E. Celebi, et al., “Automatic detection of blue-white veil and related structures in dermoscopy images,” Comput. Med. Imaging Graphics 32 (8), 670–677 (2008).CrossRef M. E. Celebi, et al., “Automatic detection of blue-white veil and related structures in dermoscopy images,” Comput. Med. Imaging Graphics 32 (8), 670–677 (2008).CrossRef
31.
go back to reference R. B. Oliveira, N. Marranghello, A. S. Pereira, and J. M. R. S. Tavares, “A computational approach for detecting pigmented skin lesions in macroscopic images,” Expert Syst. Appl. 61, 53–63 (2016).CrossRef R. B. Oliveira, N. Marranghello, A. S. Pereira, and J. M. R. S. Tavares, “A computational approach for detecting pigmented skin lesions in macroscopic images,” Expert Syst. Appl. 61, 53–63 (2016).CrossRef
32.
go back to reference F. Dalila, A. Zohra, K. Reda, and C. Hocine, “Segmentation and classification of melanoma and benign skin lesions,” Optik (Int. J. Light Electron Opt.) 140, 749–761 (2017).CrossRef F. Dalila, A. Zohra, K. Reda, and C. Hocine, “Segmentation and classification of melanoma and benign skin lesions,” Optik (Int. J. Light Electron Opt.) 140, 749–761 (2017).CrossRef
33.
go back to reference M. Silveira, et al., “Comparison of segmentation methods for melanoma diagnosis in dermoscopy images,” IEEE J. Sel. Top. Signal Process. 3 (1), 35–45 (2009).CrossRef M. Silveira, et al., “Comparison of segmentation methods for melanoma diagnosis in dermoscopy images,” IEEE J. Sel. Top. Signal Process. 3 (1), 35–45 (2009).CrossRef
34.
go back to reference M. E. Roberts and E. Claridge, “An artificially evolved vision system for segmenting skin lesion images,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2003, Proc. 6th Int. Conf., Ed. by R. E. Ellis and T. M. Peters, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2003), vol. 2878, pp. 655–662. M. E. Roberts and E. Claridge, “An artificially evolved vision system for segmenting skin lesion images,” in Medical Image Computing and Computer-Assisted InterventionMICCAI 2003, Proc. 6th Int. Conf., Ed. by R. E. Ellis and T. M. Peters, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2003), vol. 2878, pp. 655–662.
35.
go back to reference P. G. Cavalcanti, J. Scharcanski, and G. V. G. Baranoski, “A two-stage approach for discriminating melanocytic skin lesions using standard cameras,” Expert Syst. Appl. 40 (10), 4054–4064 (2013).CrossRef P. G. Cavalcanti, J. Scharcanski, and G. V. G. Baranoski, “A two-stage approach for discriminating melanocytic skin lesions using standard cameras,” Expert Syst. Appl. 40 (10), 4054–4064 (2013).CrossRef
36.
go back to reference L. Yu, H. Chen, Q. Dou, J. Qin, and P. Heng, “Automated melanoma recognition in dermoscopy images via very deep residual networks,” IEEE Trans. Med. Imaging 36 (4), 994–1004 (2017).CrossRef L. Yu, H. Chen, Q. Dou, J. Qin, and P. Heng, “Automated melanoma recognition in dermoscopy images via very deep residual networks,” IEEE Trans. Med. Imaging 36 (4), 994–1004 (2017).CrossRef
37.
go back to reference J. Hagerty, et al., “Deep learning and handcrafted method fusion: higher diagnostic accuracy for melanoma dermoscopy images,” IEEE J. Biomed. Health Inf. (2019). J. Hagerty, et al., “Deep learning and handcrafted method fusion: higher diagnostic accuracy for melanoma dermoscopy images,” IEEE J. Biomed. Health Inf. (2019).
38.
go back to reference T. Mendonca, P. M. Ferreira, J. S. Marques, A. R. S. Marcal, and J. Rozeira, “PH2 – A dermoscopic image database for research and benchmarking,” in Proc. 35th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS 2013) (Osaka, Japan, 2013), IEEE, pp. 5437–5440. T. Mendonca, P. M. Ferreira, J. S. Marques, A. R. S. Marcal, and J. Rozeira, “PH2 – A dermoscopic image database for research and benchmarking,” in Proc. 35th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS 2013) (Osaka, Japan, 2013), IEEE, pp. 5437–5440.
39.
go back to reference K. Kimura, S. Kikuchi, and S.-I. Yamasaki, “Accurate root length measurement by image analysis,” Plant Soil 216 (1–2), 117–127 (1999).CrossRef K. Kimura, S. Kikuchi, and S.-I. Yamasaki, “Accurate root length measurement by image analysis,” Plant Soil 216 (1–2), 117–127 (1999).CrossRef
40.
go back to reference B. K. Rao, et al., “Can early malignant melanoma be differentiated from atypical melanocytic nevi by in vivo techniques? Part I. Clinical and dermoscopic characteristics,” Skin Res. Technol. 3 (1), 8–14 (1997).CrossRef B. K. Rao, et al., “Can early malignant melanoma be differentiated from atypical melanocytic nevi by in vivo techniques? Part I. Clinical and dermoscopic characteristics,” Skin Res. Technol. 3 (1), 8–14 (1997).CrossRef
Metadata
Title
A Computational Approach to Pertinent Feature Extraction for Diagnosis of Melanoma Skin Lesion
Authors
Sharmin Majumder
Muhammad Ahsan Ullah
Publication date
01-07-2019
Publisher
Pleiades Publishing
Published in
Pattern Recognition and Image Analysis / Issue 3/2019
Print ISSN: 1054-6618
Electronic ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661819030131

Other articles of this Issue 3/2019

Pattern Recognition and Image Analysis 3/2019 Go to the issue

MATHEMATICAL METHOD IN PATTERN RECOGNITION

On a Classification Method for a Large Number of Classes

REPRESENTATION, PROCESSING, ANALYSIS, AND UNDERSTANDING OF IMAGES

Image Classification Model Using Visual Bag of Semantic Words

REPRESENTATION, PROCESSING, ANALYSIS, AND UNDERSTANDING OF IMAGES

Adaptive Detection of Normal Mixture Signals with Pre-Estimated Gaussian Mixture Noise

Premium Partner