Skip to main content
Top
Published in: Journal of Scientific Computing 3/2018

14-11-2017

A Computational Global Tangential Krylov Subspace Method for Model Reduction of Large-Scale MIMO Dynamical Systems

Authors: A. H. Bentbib, K. Jbilou, Y. Kaouane

Published in: Journal of Scientific Computing | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we present a new approach for model order reduction problems, with multiple inputs and multiple outputs, named: Adaptive Global Tangential Arnoldi Algorithm. This method is based on a generalization of the global Arnoldi algorithm. The selection of the shifts and the tangent directions are done with an adaptive procedure. We give some algebraic properties and present some numerical examples to show the effectiveness of the proposed algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Oberwolfach model reduction benchmark collection 2003. http://​www.​imtek.​de/​simulation/​benchmark.
 
2
Oberwolfach model reduction benchmark collection 2003. http://​www.​imtek.​de/​simulation/​benchmark.
 
Literature
1.
go back to reference Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In: Mohammadpour, J., Grigoriadis, K. (eds.) Efficient Modeling and Control of Large-Scale Systems, pp. 2–58. Springer-Verlag, New York (2010) Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In: Mohammadpour, J., Grigoriadis, K. (eds.) Efficient Modeling and Control of Large-Scale Systems, pp. 2–58. Springer-Verlag, New York (2010)
2.
go back to reference Bai, Z.: Krylov subspace techniques for reduced-order modeling of large scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)MathSciNetCrossRefMATH Bai, Z.: Krylov subspace techniques for reduced-order modeling of large scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)MathSciNetCrossRefMATH
3.
go back to reference Barkouki, H., Bentbib, A.H., Jbilou, K.: An adaptive rational block Lanczos-type algorithm for model reduction of large scale dynamical systems. SIAM J. Sci. Comput. 67, 221–236 (2015)MathSciNetCrossRefMATH Barkouki, H., Bentbib, A.H., Jbilou, K.: An adaptive rational block Lanczos-type algorithm for model reduction of large scale dynamical systems. SIAM J. Sci. Comput. 67, 221–236 (2015)MathSciNetCrossRefMATH
4.
go back to reference Beattie, C.A., Gugercin, S.: Interpolation projection methods for structure-preserving model reduction. Syst. Control Lett. 58, 225–232 (2009)CrossRefMATH Beattie, C.A., Gugercin, S.: Interpolation projection methods for structure-preserving model reduction. Syst. Control Lett. 58, 225–232 (2009)CrossRefMATH
5.
go back to reference Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)MathSciNetCrossRefMATH Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)MathSciNetCrossRefMATH
6.
go back to reference De Villemagne, C., Skelton, R.: Model reductions using a projection formulation. Int. J. Control 46, 2141–2169 (1987)MathSciNetCrossRef De Villemagne, C., Skelton, R.: Model reductions using a projection formulation. Int. J. Control 46, 2141–2169 (1987)MathSciNetCrossRef
7.
go back to reference Druskin, V., Lieberman, C., Zaslavsky, M.: On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems. SIAM J. Sci. Comput. 32, 2485–2496 (2010)MathSciNetCrossRefMATH Druskin, V., Lieberman, C., Zaslavsky, M.: On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems. SIAM J. Sci. Comput. 32, 2485–2496 (2010)MathSciNetCrossRefMATH
8.
go back to reference Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60, 546–560 (2011)MathSciNetCrossRefMATH Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60, 546–560 (2011)MathSciNetCrossRefMATH
9.
go back to reference Druskin, V., Simoncini, V., Zaslavsky, M.: Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems. SIAM J. Matrix Anal. Appl. 35, 476–498 (2014)MathSciNetCrossRefMATH Druskin, V., Simoncini, V., Zaslavsky, M.: Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems. SIAM J. Matrix Anal. Appl. 35, 476–498 (2014)MathSciNetCrossRefMATH
10.
go back to reference Feldmann, P., Freund, R.: Efficient linear circuit analysis by Padé-approximation via the Lanczos process. IEEE Trans. Comput. Aided Des. 14, 639–649 (1995)CrossRef Feldmann, P., Freund, R.: Efficient linear circuit analysis by Padé-approximation via the Lanczos process. IEEE Trans. Comput. Aided Des. 14, 639–649 (1995)CrossRef
11.
go back to reference Gallivan, K., Vandendorpe, A., Dooren, P.: Model reduction of MIMO systems via tangential interpolation. SIAM. J. Matrix Anal. Appl. 26, 328–349 (2006)MathSciNetCrossRefMATH Gallivan, K., Vandendorpe, A., Dooren, P.: Model reduction of MIMO systems via tangential interpolation. SIAM. J. Matrix Anal. Appl. 26, 328–349 (2006)MathSciNetCrossRefMATH
12.
13.
go back to reference Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L1-errors bounds. Int. J. Control 39, 1115–1193 (1984)CrossRefMATH Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L1-errors bounds. Int. J. Control 39, 1115–1193 (1984)CrossRefMATH
14.
go back to reference Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis, Coordinated Science Laboratory, University of Illinois at Urbana–Champaign (1997) Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis, Coordinated Science Laboratory, University of Illinois at Urbana–Champaign (1997)
15.
go back to reference Gugercin, S., Antoulas, A.C., Bedrossian, N.: Approximation of the international space station 1R and 12A models. In: Proceedings of the 40th CDC (2001) Gugercin, S., Antoulas, A.C., Bedrossian, N.: Approximation of the international space station 1R and 12A models. In: Proceedings of the 40th CDC (2001)
16.
go back to reference Guttel, S., Knizhnerman, L.: Automated parameter selection for rational Arnoldi approximation of Markov functions. Proc. Appl. Math. Mecha. 11, 15–18 (2011)CrossRef Guttel, S., Knizhnerman, L.: Automated parameter selection for rational Arnoldi approximation of Markov functions. Proc. Appl. Math. Mecha. 11, 15–18 (2011)CrossRef
17.
go back to reference Laub, A.J., Heath, M.T., Paige, C.C., Ward, R.C.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32, 115–122 (1987)CrossRefMATH Laub, A.J., Heath, M.T., Paige, C.C., Ward, R.C.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32, 115–122 (1987)CrossRefMATH
19.
go back to reference Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26, 17–32 (1981)MathSciNetCrossRefMATH Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26, 17–32 (1981)MathSciNetCrossRefMATH
20.
go back to reference Olshevsky, V., Shokrollahi, A.: A superfast algorithm for confluent rational tangential interpolation problem via matrix-vector multiplication for confluent Cauchy-like matrices, in structured matrices in mathematics, computer science, and engineering. Contemp. Math. 280, 32–46 (2001)MATH Olshevsky, V., Shokrollahi, A.: A superfast algorithm for confluent rational tangential interpolation problem via matrix-vector multiplication for confluent Cauchy-like matrices, in structured matrices in mathematics, computer science, and engineering. Contemp. Math. 280, 32–46 (2001)MATH
22.
go back to reference Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems. II: Matrix pairs. Lin. Alg. Appl. 197–198, 283–295 (1994)MathSciNetCrossRefMATH Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems. II: Matrix pairs. Lin. Alg. Appl. 197–198, 283–295 (1994)MathSciNetCrossRefMATH
24.
go back to reference Ruhe, A.: The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: complex shifts for real matrices. BIT Numer. Math. 34, 165–176 (1994)MathSciNetCrossRefMATH Ruhe, A.: The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: complex shifts for real matrices. BIT Numer. Math. 34, 165–176 (1994)MathSciNetCrossRefMATH
25.
go back to reference Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34, 729–733 (1989)MathSciNetCrossRefMATH Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34, 729–733 (1989)MathSciNetCrossRefMATH
26.
go back to reference Van Dooren, P., Gallivan, K.A., Absil, P.: \({H}_2\)-optimal model reduction with higher order poles. SIAM J. Matrix Anal. Appl. 31, 2738–2753 (2010)MathSciNetCrossRefMATH Van Dooren, P., Gallivan, K.A., Absil, P.: \({H}_2\)-optimal model reduction with higher order poles. SIAM J. Matrix Anal. Appl. 31, 2738–2753 (2010)MathSciNetCrossRefMATH
27.
go back to reference Yousuff, A., Skelton, R.: Covariance equivalent realizations with applications to model reduction of large-scale systems. Control Dynam. Syst. 22, 273–348 (1985)MathSciNetCrossRefMATH Yousuff, A., Skelton, R.: Covariance equivalent realizations with applications to model reduction of large-scale systems. Control Dynam. Syst. 22, 273–348 (1985)MathSciNetCrossRefMATH
Metadata
Title
A Computational Global Tangential Krylov Subspace Method for Model Reduction of Large-Scale MIMO Dynamical Systems
Authors
A. H. Bentbib
K. Jbilou
Y. Kaouane
Publication date
14-11-2017
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0601-x

Other articles of this Issue 3/2018

Journal of Scientific Computing 3/2018 Go to the issue

Premium Partner