Skip to main content
Top
Published in: Journal of Computational Electronics 2/2020

11-02-2020

A configurable two-layer four-bias graphene-based THz absorber

Authors: Mohamadreza Soltani, Alireza Najafi, Iman Chaharmahali, Sadegh Biabanifard

Published in: Journal of Computational Electronics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel structure for a THz absorber covering the THz band (0.1–10 THz) is presented. Exploiting nanographene disks and ribbons beside the dual-bias method, three modes of operation are introduced with the graphene gate biasing as the control parameter. The structure includes two layers consisting of graphene patterns on TOPAS dielectric and a thick gold plate at the bottom. The superior performance of the structure mainly relies on the use of feasible geometric patterns and the characteristics of graphene, while an evolutionary genetic algorithm is used to optimize a cost function defined based on four chemical potential values. In comparison with conventional structures, the device proposed herein offers an increased number of gate biases and thereby more degrees of freedom to achieve greater tunability. To model the proposed device, a recently developed circuit model approach is modified to include the dual-bias scheme introduced herein, enabling a very simple calculation of the referred input impedance of the device that lies at the heart of the design procedure. The input impedance required for impedance matching theory is matched with the free space incident medium (120π Ω) to maximize the absorption. Finally, the results from the MATLAB algorithm are verified against finite element method simulations using the CST simulator, confirming the validity and accuracy of the proposed design. According to both the circuit model representation and the full-wave numerical modeling, the presented device absorbs THz waves with an absorption ratio of more than 90% in three operational modes, viz. mode A (0.7–2.2 THz), mode B (5.3–6.6 THz), and mode C (7.4–8.4 THz). This increases its potential for use in numerous applications in the THz band such as sensors, detectors, modulators, and even optical processors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khavasi, A., Rejaei, B.: Analytical modeling of graphene ribbons as optical circuit elements. IEEE J. Quantum Electron. 50, 397–403 (2014)CrossRef Khavasi, A., Rejaei, B.: Analytical modeling of graphene ribbons as optical circuit elements. IEEE J. Quantum Electron. 50, 397–403 (2014)CrossRef
2.
go back to reference Parizi, S.B., Rejaei, B., Khavasi, A.: Analytical circuit model for periodic arrays of graphene disks. IEEE J. Quantum Electron. 51, 1–7 (2015)CrossRef Parizi, S.B., Rejaei, B., Khavasi, A.: Analytical circuit model for periodic arrays of graphene disks. IEEE J. Quantum Electron. 51, 1–7 (2015)CrossRef
3.
go back to reference Xiong, H., et al.: Equivalent circuit method analysis of graphene-metamaterial (GM) absorber. Plasmonics 13(3), 857–862 (2018)CrossRef Xiong, H., et al.: Equivalent circuit method analysis of graphene-metamaterial (GM) absorber. Plasmonics 13(3), 857–862 (2018)CrossRef
5.
go back to reference Biabanifard, M., Mohammad, S.A.: Circuit modeling of tunable terahertz graphene absorber. Optik 158, 842–849 (2018)CrossRef Biabanifard, M., Mohammad, S.A.: Circuit modeling of tunable terahertz graphene absorber. Optik 158, 842–849 (2018)CrossRef
6.
go back to reference Biabanifard, S., et al.: Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt. Commun. 427, 418–425 (2018)CrossRef Biabanifard, S., et al.: Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt. Commun. 427, 418–425 (2018)CrossRef
7.
go back to reference Sadegh, B.: Ultra-broadband terahertz absorber based on graphene ribbons. Optik 172, 1026–1033 (2018)CrossRef Sadegh, B.: Ultra-broadband terahertz absorber based on graphene ribbons. Optik 172, 1026–1033 (2018)CrossRef
8.
go back to reference Biabanifard, M., et al.: Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 182, 433–442 (2019)CrossRef Biabanifard, M., et al.: Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 182, 433–442 (2019)CrossRef
9.
go back to reference Biabanifard, M., Mohammad, S.A.: Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU Int. J. Electron. Commun. 95, 256–263 (2018)CrossRef Biabanifard, M., Mohammad, S.A.: Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU Int. J. Electron. Commun. 95, 256–263 (2018)CrossRef
10.
go back to reference Tabatabaei, F., Mohammad, B., Mohammad, S.A.: Terahertz polarization-insensitive and all-optical tunable filter using the Kerr effect in graphene disks arrays. Optik 180, 526–535 (2019)CrossRef Tabatabaei, F., Mohammad, B., Mohammad, S.A.: Terahertz polarization-insensitive and all-optical tunable filter using the Kerr effect in graphene disks arrays. Optik 180, 526–535 (2019)CrossRef
11.
go back to reference Arsanjani, A., Mohammad, B., Mohammad, S.A.: A novel analytical method for designing a multi-band, polarization-insensitive and wide angle graphene-based THz absorber. Superlattices Microstruct. 128, 157–169 (2019)CrossRef Arsanjani, A., Mohammad, B., Mohammad, S.A.: A novel analytical method for designing a multi-band, polarization-insensitive and wide angle graphene-based THz absorber. Superlattices Microstruct. 128, 157–169 (2019)CrossRef
12.
go back to reference Biabanifard, M., Mohammad, S.A.: Ultra-wideband terahertz graphene absorber using a circuit model. Appl. Phys. A 124(12), 826 (2018)CrossRef Biabanifard, M., Mohammad, S.A.: Ultra-wideband terahertz graphene absorber using a circuit model. Appl. Phys. A 124(12), 826 (2018)CrossRef
13.
go back to reference Najafi, A., et al.: Reliable design of THz absorbers based on graphene patterns: exploiting genetic algorithm. Optik 203, 163924 (2020)CrossRef Najafi, A., et al.: Reliable design of THz absorbers based on graphene patterns: exploiting genetic algorithm. Optik 203, 163924 (2020)CrossRef
14.
go back to reference Jozani, K.J., et al.: Multi-bias, graphene-based reconfigurable THz absorber/reflector. Optik 198, 163248 (2019)CrossRef Jozani, K.J., et al.: Multi-bias, graphene-based reconfigurable THz absorber/reflector. Optik 198, 163248 (2019)CrossRef
15.
go back to reference Islam, M.S., et al.: Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158, 559–567 (2019)CrossRef Islam, M.S., et al.: Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158, 559–567 (2019)CrossRef
16.
go back to reference Zanjani, M.S., et al.: A reconfigurable multi-band, multi-bias THz absorber. Optik 191, 22–32 (2019)CrossRef Zanjani, M.S., et al.: A reconfigurable multi-band, multi-bias THz absorber. Optik 191, 22–32 (2019)CrossRef
17.
go back to reference Biabanifard, M., et al.: Design and comparison of terahertz graphene antenna: ordinary dipole, fractal dipole, spiral, bow-tie and log-periodic. Eng. Technol. 2, 555585-001 (2018) Biabanifard, M., et al.: Design and comparison of terahertz graphene antenna: ordinary dipole, fractal dipole, spiral, bow-tie and log-periodic. Eng. Technol. 2, 555585-001 (2018)
19.
go back to reference Yang, Ming, Hou, Ying, Kotov, Nicholas A.: Graphene-based multilayers: critical evaluation of materials assembly techniques. Nano Today 7(5), 430–447 (2012)CrossRef Yang, Ming, Hou, Ying, Kotov, Nicholas A.: Graphene-based multilayers: critical evaluation of materials assembly techniques. Nano Today 7(5), 430–447 (2012)CrossRef
20.
go back to reference Sang, T., et al.: Approaching total absorption of graphene strips using a c-Si subwavelength periodic membrane. Opt. Commun. 413, 255–260 (2018)CrossRef Sang, T., et al.: Approaching total absorption of graphene strips using a c-Si subwavelength periodic membrane. Opt. Commun. 413, 255–260 (2018)CrossRef
21.
go back to reference Fardoost, A., Fatemeh, G.V., Reza, S.: Design of a multilayer graphene-based ultrawideband terahertz absorber. IEEE Trans. Nanotechnol. 16(1), 68–74 (2017) Fardoost, A., Fatemeh, G.V., Reza, S.: Design of a multilayer graphene-based ultrawideband terahertz absorber. IEEE Trans. Nanotechnol. 16(1), 68–74 (2017)
22.
go back to reference Guo, J., Leiming, W., Dai, X., Xiang, Y., Fan, D.: Absorption enhancement and total absorption in a graphene-waveguide hybrid structure. AIP Adv. 7(2), 025101 (2017)CrossRef Guo, J., Leiming, W., Dai, X., Xiang, Y., Fan, D.: Absorption enhancement and total absorption in a graphene-waveguide hybrid structure. AIP Adv. 7(2), 025101 (2017)CrossRef
23.
go back to reference Wang, X., Jiang, X., You, Q., Guo, J., Dai, X., Xiang, Y.: Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene. Photonics Res. 5(6), 536–542 (2017)CrossRef Wang, X., Jiang, X., You, Q., Guo, J., Dai, X., Xiang, Y.: Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene. Photonics Res. 5(6), 536–542 (2017)CrossRef
24.
go back to reference Xiang, Y., Dai, X., Guo, J., Zhang, H., Wen, S., Tang, D.: Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 4, 5483 (2014)CrossRef Xiang, Y., Dai, X., Guo, J., Zhang, H., Wen, S., Tang, D.: Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 4, 5483 (2014)CrossRef
25.
go back to reference Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, Li, Ma, Y.: Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105(2), 021102 (2014)CrossRef Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, Li, Ma, Y.: Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105(2), 021102 (2014)CrossRef
26.
go back to reference Runmei, G., Xu, Z., Ding, C., Wu, L., Yao, J.: Graphene metamaterial for multiband and broadband terahertz absorber. Opt. Commun. 356, 400–404 (2015)CrossRef Runmei, G., Xu, Z., Ding, C., Wu, L., Yao, J.: Graphene metamaterial for multiband and broadband terahertz absorber. Opt. Commun. 356, 400–404 (2015)CrossRef
27.
go back to reference Guo, Y., Yan, L., Pan, W., Luo, B., Luo, X.: Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs. Plasmonics 9(4), 951–957 (2014)CrossRef Guo, Y., Yan, L., Pan, W., Luo, B., Luo, X.: Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs. Plasmonics 9(4), 951–957 (2014)CrossRef
28.
go back to reference Huang, M., Cheng, Y., Cheng, Z., Chen, H., Mao, X., Gong, R.: Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle. Opt. Commun. 415, 194–201 (2018)CrossRef Huang, M., Cheng, Y., Cheng, Z., Chen, H., Mao, X., Gong, R.: Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle. Opt. Commun. 415, 194–201 (2018)CrossRef
29.
go back to reference Nasari, H., Mohammad, S.A.: Terahertz bistability and multistability in graphene/dielectric Fibonacci multilayer. Appl. Opt. 56(19), 5313–5322 (2017)CrossRef Nasari, H., Mohammad, S.A.: Terahertz bistability and multistability in graphene/dielectric Fibonacci multilayer. Appl. Opt. 56(19), 5313–5322 (2017)CrossRef
30.
go back to reference Xiang, Y., Jun, G., Xiaoyu, D., Shuangchun, W., Dingyuan, T.: Engineered surface Bloch waves in graphene-based hyperbolic metamaterials. Opt. Exp. 22(3), 3054–3062 (2014)CrossRef Xiang, Y., Jun, G., Xiaoyu, D., Shuangchun, W., Dingyuan, T.: Engineered surface Bloch waves in graphene-based hyperbolic metamaterials. Opt. Exp. 22(3), 3054–3062 (2014)CrossRef
31.
go back to reference Wu, J., Wang, H., Jiang, L., Guo, J., Dai, X., Xiang, Y., Wen, S.: Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range. J. Appl. Phys. 119(20), 203107 (2016)CrossRef Wu, J., Wang, H., Jiang, L., Guo, J., Dai, X., Xiang, Y., Wen, S.: Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range. J. Appl. Phys. 119(20), 203107 (2016)CrossRef
32.
go back to reference Meng, T., Hu, D., Zhu, Q.: Design of a five-band terahertz perfect metamaterial absorber using two resonators. Opt. Commun. 415, 151–155 (2018)CrossRef Meng, T., Hu, D., Zhu, Q.: Design of a five-band terahertz perfect metamaterial absorber using two resonators. Opt. Commun. 415, 151–155 (2018)CrossRef
33.
go back to reference Dong, Y., Liu, P., Dingwang, Y., Li, G., Yang, L.: A tunable ultrabroadband ultrathin terahertz absorber using graphene stacks. IEEE Antennas Wirel. Propag. Lett. 16, 1115–1118 (2017)CrossRef Dong, Y., Liu, P., Dingwang, Y., Li, G., Yang, L.: A tunable ultrabroadband ultrathin terahertz absorber using graphene stacks. IEEE Antennas Wirel. Propag. Lett. 16, 1115–1118 (2017)CrossRef
34.
go back to reference Pan, W., Xuan, Y., Zhang, J., Zeng, W.: A broadband terahertz metamaterial absorber based on two circular split rings. IEEE J. Quantum Electron. 53(1), 1–6 (2017)CrossRef Pan, W., Xuan, Y., Zhang, J., Zeng, W.: A broadband terahertz metamaterial absorber based on two circular split rings. IEEE J. Quantum Electron. 53(1), 1–6 (2017)CrossRef
35.
go back to reference Ye, L., Chen, Y., Cai, G., Liu, N., Zhu, J., Song, Z., Liu, Q.H.: Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Opt. Exp. 25, 11223–11232 (2017)CrossRef Ye, L., Chen, Y., Cai, G., Liu, N., Zhu, J., Song, Z., Liu, Q.H.: Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Opt. Exp. 25, 11223–11232 (2017)CrossRef
Metadata
Title
A configurable two-layer four-bias graphene-based THz absorber
Authors
Mohamadreza Soltani
Alireza Najafi
Iman Chaharmahali
Sadegh Biabanifard
Publication date
11-02-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01462-0

Other articles of this Issue 2/2020

Journal of Computational Electronics 2/2020 Go to the issue