A Correction Method of a Base Classifier Applied to Imbalanced Data Classification | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

A Correction Method of a Base Classifier Applied to Imbalanced Data Classification

Authors : Pawel Trajdos, Marek Kurzynski

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

In this paper, the issue of tailoring the soft confusion matrix classifier to deal with imbalanced data is addressed. This is done by changing the definition of the soft neighbourhood of the classified object. The first approach is to change the neighbourhood to be more local by changing the Gaussian potential function approach to the nearest neighbour rule. The second one is to weight the instances that are included in the neighbourhood. The instances are weighted inversely proportional to the a priori class probability. The experimental results show that for one of the investigated base classifiers, the usage of the KNN neighbourhood significantly improves the classification results. What is more, the application of the weighting schema also offers a significant improvement.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Ali, A., Shamsuddin, S.M., Ralescu, A.L., et al.: Classification with class imbalance problem: a review. Int. J. Adv. Soft Comput. Appl. 7(3), 176–204 (2015) Ali, A., Shamsuddin, S.M., Ralescu, A.L., et al.: Classification with class imbalance problem: a review. Int. J. Adv. Soft Comput. Appl. 7(3), 176–204 (2015)
2.
4.
go back to reference Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006) MathSciNetMATH Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006) MathSciNetMATH
6.
11.
go back to reference Garcia, S., Herrera, F.: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008) MATH Garcia, S., Herrera, F.: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008) MATH
25.
go back to reference Patel, H., Thakur, G.: A hybrid weighted nearest neighbor approach to mine imbalanced data. In: Proceedings of the International Conference on Data Mining (DMIN), pp. 106–110. The Steering Committee of The World Congress in Computer Science, Computer... (2016) Patel, H., Thakur, G.: A hybrid weighted nearest neighbor approach to mine imbalanced data. In: Proceedings of the International Conference on Data Mining (DMIN), pp. 106–110. The Steering Committee of The World Congress in Computer Science, Computer... (2016)
27.
go back to reference Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993) Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)
28.
go back to reference Ramyachitra, D., Manikandan, P.: Imbalanced dataset classification and solutions: a review. Int. J. Comput. Bus. Res. (IJCBR) 5(4), 186–194 (2014) Ramyachitra, D., Manikandan, P.: Imbalanced dataset classification and solutions: a review. Int. J. Comput. Bus. Res. (IJCBR) 5(4), 186–194 (2014)
42.
go back to reference Zheng, Z., Cai, Y., Li, Y.: Oversampling method for imbalanced classification. Comput. Inform. 34(5), 1017–1037 (2016) Zheng, Z., Cai, Y., Li, Y.: Oversampling method for imbalanced classification. Comput. Inform. 34(5), 1017–1037 (2016)
Metadata
Title
A Correction Method of a Base Classifier Applied to Imbalanced Data Classification
Authors
Pawel Trajdos
Marek Kurzynski
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_7