Skip to main content
Top
Published in: Journal of Materials Science 15/2018

04-05-2018 | Computation

A coupled electrochemical–thermal–mechanical model for spiral-wound Li-ion batteries

Authors: Xiting Duan, Wenjuan Jiang, Youlan Zou, Weixin Lei, Zengsheng Ma

Published in: Journal of Materials Science | Issue 15/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to clarify the interaction of electrochemistry, thermal and diffusion-induced stress, in this work, we present a coupled electrochemical–thermal–mechanical model for spiral-wound Li batteries by coupling the mass, charge, energy and mechanics conservations as well as the electrochemical kinetics. A series of temperatures and Li concentration parameters on the reaction rate and Li+ transport are employed in this model. The results show that this model is validated for both the electrochemical performances and thermal behaviors at a constant discharge current by finite element simulation. Furthermore, the heat generation of three thermal sources and stress analysis are also discussed. This work is helpful to the battery structural design and battery thermal management.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cui L-F, Yang Y, Hsu C-M, Cui Y (2009) Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9:3370–3374CrossRef Cui L-F, Yang Y, Hsu C-M, Cui Y (2009) Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9:3370–3374CrossRef
2.
go back to reference Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRef Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRef
3.
go back to reference Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79CrossRef Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79CrossRef
4.
go back to reference Takezawa H, Ito S, Yoshizawa H, Abe T (2017) Comparative study of approaches to achieve improved cyclability and high capacity in a silicon suboxide film anode for lithium-ion batteries. Electrochim Acta 245:1005–1009CrossRef Takezawa H, Ito S, Yoshizawa H, Abe T (2017) Comparative study of approaches to achieve improved cyclability and high capacity in a silicon suboxide film anode for lithium-ion batteries. Electrochim Acta 245:1005–1009CrossRef
5.
go back to reference Nguyen T, Boudard M, Carmezim MJ, Montemor MF (2017) Ni x Co1−x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors. Energy 126:208–216CrossRef Nguyen T, Boudard M, Carmezim MJ, Montemor MF (2017) Ni x Co1−x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors. Energy 126:208–216CrossRef
6.
go back to reference Boukamp B, Lesh G, Huggins R (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128:725–729CrossRef Boukamp B, Lesh G, Huggins R (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128:725–729CrossRef
7.
go back to reference Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:187–191CrossRef Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:187–191CrossRef
9.
go back to reference Cheng YT, Verbrugge MW (2009) Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources 190:453–460CrossRef Cheng YT, Verbrugge MW (2009) Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources 190:453–460CrossRef
10.
go back to reference Wu B, Lu W (2017) A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction. J Power Sources 360:360–372CrossRef Wu B, Lu W (2017) A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction. J Power Sources 360:360–372CrossRef
11.
go back to reference Huggins R, Nix W (2000) Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6:57–63CrossRef Huggins R, Nix W (2000) Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6:57–63CrossRef
12.
go back to reference Christensen J, Newman J (2006) Stress generation and fracture in lithium insertion materials. J Solid State Electrochem 10:293–319CrossRef Christensen J, Newman J (2006) Stress generation and fracture in lithium insertion materials. J Solid State Electrochem 10:293–319CrossRef
13.
go back to reference Wang WL, Lee S, Chen JR (2002) Effect of chemical stress on diffusion in a hollow cylinder. J Appl Phys 91:9584–9590CrossRef Wang WL, Lee S, Chen JR (2002) Effect of chemical stress on diffusion in a hollow cylinder. J Appl Phys 91:9584–9590CrossRef
14.
go back to reference Yang F (2005) Interaction between diffusion and chemical stresses. Mater Sci Eng A 409:153–159CrossRef Yang F (2005) Interaction between diffusion and chemical stresses. Mater Sci Eng A 409:153–159CrossRef
15.
go back to reference Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100CrossRef Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100CrossRef
16.
go back to reference Nasehi R, Alamatsaz A, Salimpour MR (2016) Using multi-shell phase change materials layers for cooling a lithium-ion battery. Therm Sci 20:391–403CrossRef Nasehi R, Alamatsaz A, Salimpour MR (2016) Using multi-shell phase change materials layers for cooling a lithium-ion battery. Therm Sci 20:391–403CrossRef
17.
go back to reference He H, Xiong R, Guo H (2012) Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles. Appl Energy 89:413–420CrossRef He H, Xiong R, Guo H (2012) Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles. Appl Energy 89:413–420CrossRef
18.
go back to reference Tang S, Wang Y, Sahinoglu Z, Wada T, Hara S, Krstic M (2015) State-of-charge estimation for lithium-ion batteries via a coupled thermal–electrochemical model. In: American control conference (ACC), pp 5871–5877 Tang S, Wang Y, Sahinoglu Z, Wada T, Hara S, Krstic M (2015) State-of-charge estimation for lithium-ion batteries via a coupled thermal–electrochemical model. In: American control conference (ACC), pp 5871–5877
19.
go back to reference Huang H-H, Chen H-Y, Liao K-C, Young H-T, Lee C-F, Tien J-Y (2017) Thermal–electrochemical coupled simulations for cell-to-cell imbalances in lithium–iron–phosphate based battery packs. Appl Therm Eng 123:584–591CrossRef Huang H-H, Chen H-Y, Liao K-C, Young H-T, Lee C-F, Tien J-Y (2017) Thermal–electrochemical coupled simulations for cell-to-cell imbalances in lithium–iron–phosphate based battery packs. Appl Therm Eng 123:584–591CrossRef
20.
go back to reference Li J, Cheng Y, Jia M, Tang Y, Lin Y, Zhang Z, Liu Y (2014) An electrochemical–thermal model based on dynamic responses for lithium iron phosphate battery. J Power Sources 255:130–143CrossRef Li J, Cheng Y, Jia M, Tang Y, Lin Y, Zhang Z, Liu Y (2014) An electrochemical–thermal model based on dynamic responses for lithium iron phosphate battery. J Power Sources 255:130–143CrossRef
21.
go back to reference Kizilel R, Sabbah R, Selman JR, Al-Hallaj S (2009) An alternative cooling system to enhance the safety of Li-ion battery packs. J Power Sources 194:1105–1112CrossRef Kizilel R, Sabbah R, Selman JR, Al-Hallaj S (2009) An alternative cooling system to enhance the safety of Li-ion battery packs. J Power Sources 194:1105–1112CrossRef
22.
go back to reference Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) A review on electric vehicle battery modelling: from lithium-ion toward lithium–sulphur. Renew Sustain Energy Rev 56:1008–1021CrossRef Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) A review on electric vehicle battery modelling: from lithium-ion toward lithium–sulphur. Renew Sustain Energy Rev 56:1008–1021CrossRef
23.
go back to reference Grandjean T, Barai A, Hosseinzadeh E, Guo Y, McGordon A, Marco J (2017) Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management. J Power Sources 359:215–225CrossRef Grandjean T, Barai A, Hosseinzadeh E, Guo Y, McGordon A, Marco J (2017) Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management. J Power Sources 359:215–225CrossRef
24.
go back to reference Cheng YT, Verbrugge MW (2008) The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J Appl Phys 104:083521–083527CrossRef Cheng YT, Verbrugge MW (2008) The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J Appl Phys 104:083521–083527CrossRef
25.
go back to reference Xiao X, Wu W, Huang X (2010) A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery. J Power Sources 195:7649–7660CrossRef Xiao X, Wu W, Huang X (2010) A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery. J Power Sources 195:7649–7660CrossRef
26.
go back to reference Kim G-H, Pesaran A, Spotnitz R (2007) A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources 170:476–489CrossRef Kim G-H, Pesaran A, Spotnitz R (2007) A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources 170:476–489CrossRef
27.
go back to reference Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890–1903CrossRef Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890–1903CrossRef
28.
go back to reference Johnson BA, White RE (1998) Characterization of commercially available lithium-ion batteries. J Power Sources 70:48–54CrossRef Johnson BA, White RE (1998) Characterization of commercially available lithium-ion batteries. J Power Sources 70:48–54CrossRef
29.
go back to reference Somasundaram K, Birgersson E, Mujumdar AS (2012) Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery. J Power Sources 203:84–96CrossRef Somasundaram K, Birgersson E, Mujumdar AS (2012) Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery. J Power Sources 203:84–96CrossRef
30.
go back to reference Wu W, Xiao X, Huang X, Yan S (2014) A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell. Comput Mater Sci 83:127–136CrossRef Wu W, Xiao X, Huang X, Yan S (2014) A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell. Comput Mater Sci 83:127–136CrossRef
31.
go back to reference Guo M, Sikha G, White RE (2011) Single-particle model for a lithium-ion cell: thermal behavior. J Electrochem Soc 158:A122–A132CrossRef Guo M, Sikha G, White RE (2011) Single-particle model for a lithium-ion cell: thermal behavior. J Electrochem Soc 158:A122–A132CrossRef
32.
go back to reference Zhang X, Shyy W, Sastry AM (2007) Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc 154:A910–A916CrossRef Zhang X, Shyy W, Sastry AM (2007) Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc 154:A910–A916CrossRef
33.
go back to reference Valøen LO, Reimers JN (2005) Transport properties of LiPF6 based Li-ion battery electrolytes. J Electrochem Soc 152:A882–A891CrossRef Valøen LO, Reimers JN (2005) Transport properties of LiPF6 based Li-ion battery electrolytes. J Electrochem Soc 152:A882–A891CrossRef
34.
go back to reference Wu W, Xiao X, Huang X (2012) The effect of battery design parameters on heat generation and utilization in a Li-ion cell. Electrochim Acta 83:227–240CrossRef Wu W, Xiao X, Huang X (2012) The effect of battery design parameters on heat generation and utilization in a Li-ion cell. Electrochim Acta 83:227–240CrossRef
35.
go back to reference Ye Y, Shi Y, Cai N, Lee J, He X (2012) Electro-thermal modeling and experimental validation for lithium ion battery. J Power Sources 199:227–238CrossRef Ye Y, Shi Y, Cai N, Lee J, He X (2012) Electro-thermal modeling and experimental validation for lithium ion battery. J Power Sources 199:227–238CrossRef
36.
go back to reference Kim GH, Smith K, Ireland J, Pesaran A (2012) Fail-safe design for large capacity lithium-ion battery systems. J Power Sources 210:243–253CrossRef Kim GH, Smith K, Ireland J, Pesaran A (2012) Fail-safe design for large capacity lithium-ion battery systems. J Power Sources 210:243–253CrossRef
37.
go back to reference Guo M, White RE (2014) Mathematical model for a spirally-wound lithium-ion cell. J Power Sources 250:220–235CrossRef Guo M, White RE (2014) Mathematical model for a spirally-wound lithium-ion cell. J Power Sources 250:220–235CrossRef
38.
go back to reference Yang FQ (2012) Diffusion-induced stress in inhomogeneous materials: concentration-dependent elastic modulus. Sci China 55:955–962 Yang FQ (2012) Diffusion-induced stress in inhomogeneous materials: concentration-dependent elastic modulus. Sci China 55:955–962
39.
go back to reference Qi Y, Guo H, Hector LG, Timmons A (2010) Threefold increase in the Young’s modulus of graphite negative electrode during lithium intercalation. J Electrochem Soc 157:A558–A566CrossRef Qi Y, Guo H, Hector LG, Timmons A (2010) Threefold increase in the Young’s modulus of graphite negative electrode during lithium intercalation. J Electrochem Soc 157:A558–A566CrossRef
40.
go back to reference Shenoy VB, Johari P, Qi Y (2010) Elastic softening of amorphous and crystalline Li–Si phases with increasing Li concentration: a first-principles study. J Power Sources 195:6825–6830CrossRef Shenoy VB, Johari P, Qi Y (2010) Elastic softening of amorphous and crystalline Li–Si phases with increasing Li concentration: a first-principles study. J Power Sources 195:6825–6830CrossRef
41.
go back to reference Deshpande R, Qi Y, Cheng YT (2015) Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J Electrochem Soc 157:A967–A971CrossRef Deshpande R, Qi Y, Cheng YT (2015) Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J Electrochem Soc 157:A967–A971CrossRef
42.
go back to reference Saw LH, Ye Y, Tay AAO (2013) Electrochemical–thermal analysis of 18650 lithium iron phosphate cell. Energy Convers Manag 75:162–174CrossRef Saw LH, Ye Y, Tay AAO (2013) Electrochemical–thermal analysis of 18650 lithium iron phosphate cell. Energy Convers Manag 75:162–174CrossRef
43.
go back to reference Lim C, Yan B, Yin L, Zhu L (2012) Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT. Electrochim Acta 75:279–287CrossRef Lim C, Yan B, Yin L, Zhu L (2012) Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT. Electrochim Acta 75:279–287CrossRef
44.
go back to reference Lee D-S, Choi Y-H, Jeong H-D (2017) Effect of electron beam irradiation on the capacity fading of hydride-terminated silicon nanocrystal based anode materials for lithium ion batteries. J Ind Eng Chem 53:82–92CrossRef Lee D-S, Choi Y-H, Jeong H-D (2017) Effect of electron beam irradiation on the capacity fading of hydride-terminated silicon nanocrystal based anode materials for lithium ion batteries. J Ind Eng Chem 53:82–92CrossRef
45.
go back to reference Liu XH, Wang JW, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh SA, Davydov AV (2012) In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat Nanotechnol 7:749–756CrossRef Liu XH, Wang JW, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh SA, Davydov AV (2012) In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat Nanotechnol 7:749–756CrossRef
47.
go back to reference Wong WC, Newman J (2002) Monte carlo simulation of the open-circuit potential and the entropy of reaction in lithium manganese oxide. J Electrochem Soc 149:A493–A498CrossRef Wong WC, Newman J (2002) Monte carlo simulation of the open-circuit potential and the entropy of reaction in lithium manganese oxide. J Electrochem Soc 149:A493–A498CrossRef
48.
go back to reference Safari M, Delacourt C (2011) Simulation-based analysis of aging phenomena in a commercial graphite/LiFePO4 cell. J Electrochem Soc 158:A1436–A1447CrossRef Safari M, Delacourt C (2011) Simulation-based analysis of aging phenomena in a commercial graphite/LiFePO4 cell. J Electrochem Soc 158:A1436–A1447CrossRef
49.
go back to reference Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang JG, Liu J, Yang Z (2010) Effect of entropy changes of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources 195:3720–3729CrossRef Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang JG, Liu J, Yang Z (2010) Effect of entropy changes of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources 195:3720–3729CrossRef
Metadata
Title
A coupled electrochemical–thermal–mechanical model for spiral-wound Li-ion batteries
Authors
Xiting Duan
Wenjuan Jiang
Youlan Zou
Weixin Lei
Zengsheng Ma
Publication date
04-05-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 15/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2365-6

Other articles of this Issue 15/2018

Journal of Materials Science 15/2018 Go to the issue

Premium Partners