Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

Published in:
Cover of the book

2018 | OriginalPaper | Chapter

A Coupled Simulation Approach to Race Track Brake Cooling for a GT3 Race Car

Authors: Will Hunt, Adam Price, Sacha Jelic, Vianney Staelens, Muhammad Saif Ul-Hasnain

Published in: Progress in Vehicle Aerodynamics and Thermal Management

Publisher: Springer International Publishing

share
SHARE

Abstract

During race track operating conditions, the vehicle is constantly accelerating and braking from high to very low velocities. This generates a lot of heat that needs to be absorbed by the brakes. Sufficient cooling is required to prevent the brakes from overheating. When brakes exceed their critical temperature, they can lose grip and start fading. Brakes can lose quite some heat through radiation and conduction to their surroundings, but most of the heat can be released through cooling airflow convection. Improving the cooling airflow to the brake discs can significantly lower the brake disc temperature during the race track duty cycle. An efficient design for convective cooling will avoid large drag penalties or significant brake disc weight increase. With simulation, the brake disc and brake system design can be optimized more efficiently, to allow more cooling airflow, by visualizing the flow and it can be used in early design stages. The 3D CFD simulation method is coupled to a radiation/conduction tool to include radiation, conduction and convection effects. It can predict the brake system temperature over time during the race track duty cycle. The results have been compared against experimental data and several design variants have been tested to improve the design.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Schütz, T., Wiedemann, J., Wickern, G., Mukutmoni, D., Wang, Z., Alajbegovic, A.: A coupled approach to brake cooling simulation. In: Mira Conference (2008) Schütz, T., Wiedemann, J., Wickern, G., Mukutmoni, D., Wang, Z., Alajbegovic, A.: A coupled approach to brake cooling simulation. In: Mira Conference (2008)
2.
go back to reference Mukutmoni, D., Jelić, S., Han, J., Haffey, M.: Role of accurate numerical simulation of brake cooldown in brake design process. In: SAE 2012 Brake Colloquium & Exhibition, SAE 2012-01-1811, San Diego, US (2012) CrossRef Mukutmoni, D., Jelić, S., Han, J., Haffey, M.: Role of accurate numerical simulation of brake cooldown in brake design process. In: SAE 2012 Brake Colloquium & Exhibition, SAE 2012-01-1811, San Diego, US (2012) CrossRef
3.
go back to reference Jelić, S., Meyland, S., Jansen, W., Alajbegovic, A.: A coupled approach to brake duty cycle simulation. In: 8th MIRA International Vehicle Aerodynamics Conference, Oxfordshire, UK (2010) Jelić, S., Meyland, S., Jansen, W., Alajbegovic, A.: A coupled approach to brake duty cycle simulation. In: 8th MIRA International Vehicle Aerodynamics Conference, Oxfordshire, UK (2010)
4.
go back to reference Meachair, D., Elliot, G., Jelić, S., Fechner, B., Bhambare, K.: Brake duty cycle simulation for thermal design of vehicle braking system. In: Eurobrake 2013, EB2013-MS-003, UK (2013) Meachair, D., Elliot, G., Jelić, S., Fechner, B., Bhambare, K.: Brake duty cycle simulation for thermal design of vehicle braking system. In: Eurobrake 2013, EB2013-MS-003, UK (2013)
6.
go back to reference Jelić, S., Fares, E., Alajbegovic, A.: Lattice-Boltzmann flow simulation of the modified sae model with heated plug including conduction and radiation effects. In: Vehicle Thermal Management Systems 8, Nottingham, UK, 2007 Jelić, S., Fares, E., Alajbegovic, A.: Lattice-Boltzmann flow simulation of the modified sae model with heated plug including conduction and radiation effects. In: Vehicle Thermal Management Systems 8, Nottingham, UK, 2007
7.
go back to reference Mukutmoni, D., Han, J., Alajbegovic, A., Colibert, L., Helene, M.: Numerical simulation of transient thermal convection of heated plate. In: SAE World Congress, SAE 2010-01-0550, Detroit (2010) Mukutmoni, D., Han, J., Alajbegovic, A., Colibert, L., Helene, M.: Numerical simulation of transient thermal convection of heated plate. In: SAE World Congress, SAE 2010-01-0550, Detroit (2010)
8.
go back to reference Mukutmoni, D., Alajbegovic, A., Han, J.: Numerical simulation of transient thermal convection of a full vehicle. In: SAE World Congress, SAE 2011-01-0645, Detroit, USA (2011) Mukutmoni, D., Alajbegovic, A., Han, J.: Numerical simulation of transient thermal convection of a full vehicle. In: SAE World Congress, SAE 2011-01-0645, Detroit, USA (2011)
9.
go back to reference Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the navier-stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986) CrossRef Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the navier-stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986) CrossRef
10.
go back to reference Chen, H., Chen, S., Matthaeus, W.: Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, 5339–5342 (1992) CrossRef Chen, H., Chen, S., Matthaeus, W.: Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, 5339–5342 (1992) CrossRef
11.
go back to reference Chen, H., Teixeira, C., Molvig, K.: Digital physics approach to computational fluid dynamics: some basic theoretical features. Int. J. Mod. Phys. C 9(8), 675 (1997) CrossRef Chen, H., Teixeira, C., Molvig, K.: Digital physics approach to computational fluid dynamics: some basic theoretical features. Int. J. Mod. Phys. C 9(8), 675 (1997) CrossRef
12.
go back to reference Chen, H., Teixeira, C., Molvig, K.: Realization of fluid boundary conditions via discrete Boltzmann dynamics. Int. J. Mod. Phys. C 9(8), 1281–1292 (1998) CrossRef Chen, H., Teixeira, C., Molvig, K.: Realization of fluid boundary conditions via discrete Boltzmann dynamics. Int. J. Mod. Phys. C 9(8), 1281–1292 (1998) CrossRef
13.
go back to reference Thantanapally, C., Singh, S., Succi, S., Ansumali, S.: Quasi-equilibrium lattice Boltzmann models with tunable Prandtl number for incompressible hydrodynamics. Int. J. Mod. Phys. C 24(12), 1340004 (2013) CrossRef Thantanapally, C., Singh, S., Succi, S., Ansumali, S.: Quasi-equilibrium lattice Boltzmann models with tunable Prandtl number for incompressible hydrodynamics. Int. J. Mod. Phys. C 24(12), 1340004 (2013) CrossRef
14.
go back to reference Chen, H.: Volumetric formulation of the lattice boltzmann method for fluid dynamics: basic concept. Phys. Rev. E 58, 3955–3963 (1998) CrossRef Chen, H.: Volumetric formulation of the lattice boltzmann method for fluid dynamics: basic concept. Phys. Rev. E 58, 3955–3963 (1998) CrossRef
15.
go back to reference Shan, X., Chen, H.: A general multiple-relaxation-time Boltzmann collision model. Int. J. Mod. Phys. C 18, 635 (2007) MathSciNetCrossRef Shan, X., Chen, H.: A general multiple-relaxation-time Boltzmann collision model. Int. J. Mod. Phys. C 18, 635 (2007) MathSciNetCrossRef
16.
go back to reference Chen, H., Goldhirsh, I., Orszag, S.: Discrete rotational symmetry, moment isotropy, and higher order lattice Boltzmann models. J. Sci. Comput. 34, 87–112 (2007) MathSciNetCrossRef Chen, H., Goldhirsh, I., Orszag, S.: Discrete rotational symmetry, moment isotropy, and higher order lattice Boltzmann models. J. Sci. Comput. 34, 87–112 (2007) MathSciNetCrossRef
17.
go back to reference Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component system. Pys. Rev. 94, 511–525 (1954) MATH Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component system. Pys. Rev. 94, 511–525 (1954) MATH
18.
go back to reference Chapman, S., Cowling, T.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1990) MATH Chapman, S., Cowling, T.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1990) MATH
19.
go back to reference Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended Boltzmann kinetic equation for turbulent flows. Science 301, 633–636 (2003) CrossRef Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended Boltzmann kinetic equation for turbulent flows. Science 301, 633–636 (2003) CrossRef
20.
go back to reference Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993) CrossRef Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993) CrossRef
21.
go back to reference Li, Y., Shock, R., Zhang, R., Chen, H.: Numerical study of flow past an impulsively started cylinder by lattice boltzmann method. J. Fluid Mech. 519, 273–300 (2004) CrossRef Li, Y., Shock, R., Zhang, R., Chen, H.: Numerical study of flow past an impulsively started cylinder by lattice boltzmann method. J. Fluid Mech. 519, 273–300 (2004) CrossRef
22.
go back to reference Chen, H., Orszag, S., Staroselsky, I., Succi, S.: Expanded analogy between Boltzmann kinetic theory of fluid and turbulence. J. Fluid Mech. 519, 307–314 (2004) MathSciNetCrossRef Chen, H., Orszag, S., Staroselsky, I., Succi, S.: Expanded analogy between Boltzmann kinetic theory of fluid and turbulence. J. Fluid Mech. 519, 307–314 (2004) MathSciNetCrossRef
23.
go back to reference Zhang, R., et al.: Lattice Boltzmann approach for local reference frames. DSFD-17 Special Edition, Communications in Computational Physics (2011) CrossRef Zhang, R., et al.: Lattice Boltzmann approach for local reference frames. DSFD-17 Special Edition, Communications in Computational Physics (2011) CrossRef
24.
go back to reference Guo, Z., Zhen, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002) CrossRef Guo, Z., Zhen, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002) CrossRef
25.
go back to reference PowerTHERM technical documentation. Version 7.1. Thermoanalytics, Calumet, US PowerTHERM technical documentation. Version 7.1. Thermoanalytics, Calumet, US
26.
go back to reference Strauss, W.: Partial Differential Equations, An Introduction. Wiley, Hoboken (2008) MATH Strauss, W.: Partial Differential Equations, An Introduction. Wiley, Hoboken (2008) MATH
Metadata
Title
A Coupled Simulation Approach to Race Track Brake Cooling for a GT3 Race Car
Authors
Will Hunt
Adam Price
Sacha Jelic
Vianney Staelens
Muhammad Saif Ul-Hasnain
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67822-1_1

Premium Partner