Skip to main content
Top
Published in:

05-01-2023

A Data-Driven Energy Management Strategy Based on Deep Reinforcement Learning for Microgrid Systems

Authors: Gang Bao, Rui Xu

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the interactions among schedulable equipment and the uncertainty of microgrid (MG) systems, it becomes increasingly difficult to establish accurate mathematical models for energy management. To improve the stability and economy of MGs, a data-driven energy management strategy must be proposed. In this paper, distributed generators (DGs) and an energy storage system (ESS) are taken as the control objects, and a data-driven energy management strategy based on prioritized experience replay soft actor-critic (PERSAC) is proposed for MGs. First, we construct an MG energy management model with the objective of minimizing the operation cost. Second, the energy management model is formulated as a Markov decision process (MDP), and the PERSAC algorithm is used to solve the MDP. Moreover, the sampling rule of the training process is optimized by using the prioritized empirical replay (PER) method. The analysis of numerical examples proves the effectiveness and practicability of the algorithm. By controlling DGs and the ESS, the operation cost of the proposed algorithm is the lowest compared with other algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aslam S, Herodotou H, Mohsin SM. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew Sustain Energy Rev. 2021;144.CrossRef Aslam S, Herodotou H, Mohsin SM. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew Sustain Energy Rev. 2021;144.CrossRef
2.
go back to reference Zia MF, Elbouchikhi E, Benbouzid M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl Energy. 2018;222:1033–55.CrossRef Zia MF, Elbouchikhi E, Benbouzid M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl Energy. 2018;222:1033–55.CrossRef
3.
go back to reference Valencia F, Collado J, Sáez D. Robust energy management system for a microgrid based on a fuzzy prediction interval model. IEEE Trans Smart Grid. 2015;7(3):1486–94.CrossRef Valencia F, Collado J, Sáez D. Robust energy management system for a microgrid based on a fuzzy prediction interval model. IEEE Trans Smart Grid. 2015;7(3):1486–94.CrossRef
4.
go back to reference Meng T, Lin Z, Shamash YA. Distributed cooperative control of battery energy storage systems in dc microgrids. IEEE/CAA Journal of Automatica Sinica. 2021;8(3):606–16.MathSciNetCrossRef Meng T, Lin Z, Shamash YA. Distributed cooperative control of battery energy storage systems in dc microgrids. IEEE/CAA Journal of Automatica Sinica. 2021;8(3):606–16.MathSciNetCrossRef
5.
go back to reference Cosic A, Stadler M, Mansoor M, Zellinger M. Mixed-integer linear programming based optimization strategies for renewable energy communities. Energy. 2021;237.CrossRef Cosic A, Stadler M, Mansoor M, Zellinger M. Mixed-integer linear programming based optimization strategies for renewable energy communities. Energy. 2021;237.CrossRef
6.
go back to reference Vitale F, Rispoli N, Sorrentino M, Rosen M. On the use of dynamic programming for optimal energy management of gridconnected reversible solid oxide cell-based renewable microgrids. Energy. 2021;225.CrossRef Vitale F, Rispoli N, Sorrentino M, Rosen M. On the use of dynamic programming for optimal energy management of gridconnected reversible solid oxide cell-based renewable microgrids. Energy. 2021;225.CrossRef
7.
go back to reference Hossain MA, Pota HR, Squartini S, Zaman F. Energy scheduling of community microgrid with battery cost using particle swarm optimisation. Appl Energy. 2019;254.CrossRef Hossain MA, Pota HR, Squartini S, Zaman F. Energy scheduling of community microgrid with battery cost using particle swarm optimisation. Appl Energy. 2019;254.CrossRef
8.
go back to reference Nosratabadi SM, Jahandide M, Guerrero JM. Robust scenario-based concept for stochastic energy management of an energy hub contains intelligent parking lot considering convexity principle of CHP nonlinear model with triple operational zones[J]. Sustain Cities Soc. 2021;68.CrossRef Nosratabadi SM, Jahandide M, Guerrero JM. Robust scenario-based concept for stochastic energy management of an energy hub contains intelligent parking lot considering convexity principle of CHP nonlinear model with triple operational zones[J]. Sustain Cities Soc. 2021;68.CrossRef
9.
go back to reference Khosravi M, Azarinfar H, Nejati AS. Microgrids energy management in automated distribution networks by considering consumers comfort index. Int J Electr Power Energy Syst. 2022;139:108013. Khosravi M, Azarinfar H, Nejati AS. Microgrids energy management in automated distribution networks by considering consumers comfort index. Int J Electr Power Energy Syst. 2022;139:108013.
10.
go back to reference Velasquez MA, Gomez BJ, Quijano N, Cadena AI. Intra-hour microgrid economic dispatch based on model predictive control. IEEE Trans Smart Grid. 2020;11(3):1968–79.CrossRef Velasquez MA, Gomez BJ, Quijano N, Cadena AI. Intra-hour microgrid economic dispatch based on model predictive control. IEEE Trans Smart Grid. 2020;11(3):1968–79.CrossRef
11.
go back to reference Chuan S, Shan G, Yu L. A model predictive control approach in microgrid considering multi-uncertainty of electric vehicles. Renew Energy. 2021;163:1385–96.CrossRef Chuan S, Shan G, Yu L. A model predictive control approach in microgrid considering multi-uncertainty of electric vehicles. Renew Energy. 2021;163:1385–96.CrossRef
12.
go back to reference Gan L, Zhang P, Lee J. Data-Driven Energy Management System With Gaussian Process Forecasting and MPC for Interconnected Microgrids. IEEE Trans Sustainable Energy. 2021;12(1):695–704.CrossRef Gan L, Zhang P, Lee J. Data-Driven Energy Management System With Gaussian Process Forecasting and MPC for Interconnected Microgrids. IEEE Trans Sustainable Energy. 2021;12(1):695–704.CrossRef
13.
go back to reference Li W, Wen S, Shi K, Yang Y. Neural Architecture Search With a Lightweight Transformer for Text-to-Image Synthesis. IEEE Transactions on Network Science and Engineering. 2022;9(3):1567–76.CrossRef Li W, Wen S, Shi K, Yang Y. Neural Architecture Search With a Lightweight Transformer for Text-to-Image Synthesis. IEEE Transactions on Network Science and Engineering. 2022;9(3):1567–76.CrossRef
14.
go back to reference Lyu B, Wen S, Shi K, Huang T. Multiobjective Reinforcement Learning-Based Neural Architecture Search for Efficient Portrait Parsing. IEEE Transactions on Cybernetics. 2021;1–12. Lyu B, Wen S, Shi K, Huang T. Multiobjective Reinforcement Learning-Based Neural Architecture Search for Efficient Portrait Parsing. IEEE Transactions on Cybernetics. 2021;1–12.
15.
go back to reference Li S, Li W, Wen S, Shi K. Auto-FERNet: A facial expression recognition network with architecture search. IEEE Transactions on Network Science and Engineering. 2021;8(3):2213–22.CrossRef Li S, Li W, Wen S, Shi K. Auto-FERNet: A facial expression recognition network with architecture search. IEEE Transactions on Network Science and Engineering. 2021;8(3):2213–22.CrossRef
16.
go back to reference Hodge VJ, Hawkins R, Alexander R. Deep reinforcement learning for drone navigation using sensor data[J]. Neural Comput Appl. 2021;33(6):2015–33.CrossRef Hodge VJ, Hawkins R, Alexander R. Deep reinforcement learning for drone navigation using sensor data[J]. Neural Comput Appl. 2021;33(6):2015–33.CrossRef
17.
go back to reference Chen Q, Zhao W, Li L, Wang C. ES-DQN: A Learning Method for Vehicle Intelligent Speed Control Strategy Under Uncertain Cut-In Scenario. IEEE Trans Veh Technol. 2022;71(3):2472–84.CrossRef Chen Q, Zhao W, Li L, Wang C. ES-DQN: A Learning Method for Vehicle Intelligent Speed Control Strategy Under Uncertain Cut-In Scenario. IEEE Trans Veh Technol. 2022;71(3):2472–84.CrossRef
18.
go back to reference Xu B, Zhou Q, Shi J, Li S. Hierarchical q-learning network for online simultaneous optimization of energy efficiency and battery life of the battery/ultracapacitor electric vehicle. Journal of Energy Storage. 2022;46.CrossRef Xu B, Zhou Q, Shi J, Li S. Hierarchical q-learning network for online simultaneous optimization of energy efficiency and battery life of the battery/ultracapacitor electric vehicle. Journal of Energy Storage. 2022;46.CrossRef
19.
go back to reference Alabdullah MH, Abido MA. Microgrid energy management using deep Q-network reinforcement learning. Alex Eng J. 2022;61(11):9069–78.CrossRef Alabdullah MH, Abido MA. Microgrid energy management using deep Q-network reinforcement learning. Alex Eng J. 2022;61(11):9069–78.CrossRef
20.
go back to reference Botvinick M, Wang JX, Dabney W, Miller KJ. Deep reinforcement learning and its neuroscientific implications. Neuron. 2020;107(4):603–16.CrossRef Botvinick M, Wang JX, Dabney W, Miller KJ. Deep reinforcement learning and its neuroscientific implications. Neuron. 2020;107(4):603–16.CrossRef
21.
go back to reference Mathew A, Jolly MJ, Mathew J. Improved residential energy management system using priority double deep q-learning. Sustain Cities Soc. 2021;69.CrossRef Mathew A, Jolly MJ, Mathew J. Improved residential energy management system using priority double deep q-learning. Sustain Cities Soc. 2021;69.CrossRef
22.
go back to reference Du Y, Zandi H, Kotevska O, Kurte K, Munk J. Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning. Appl Energy. 2021;281.CrossRef Du Y, Zandi H, Kotevska O, Kurte K, Munk J. Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning. Appl Energy. 2021;281.CrossRef
23.
go back to reference Si C, Tao Y, Qiu J, Lai J. Deep reinforcement learning based home energy management system with devices operational dependencies. Int J Mach Learn Cybern. 2021;12(6):1687–703.CrossRef Si C, Tao Y, Qiu J, Lai J. Deep reinforcement learning based home energy management system with devices operational dependencies. Int J Mach Learn Cybern. 2021;12(6):1687–703.CrossRef
24.
go back to reference Guo C, Wang X, Zheng Y, Zhang F. Optimal energy management of multi-microgrids connected to distribution system based on deep reinforcement learning. Int J Electr Power Energy Syst. 2021;131:107048. Guo C, Wang X, Zheng Y, Zhang F. Optimal energy management of multi-microgrids connected to distribution system based on deep reinforcement learning. Int J Electr Power Energy Syst. 2021;131:107048.
25.
go back to reference Li X, Ma R. Operation control strategy for energy storage station after considering battery life in commercial park. High Voltage Engineering. 2020;46(1):62–70. Li X, Ma R. Operation control strategy for energy storage station after considering battery life in commercial park. High Voltage Engineering. 2020;46(1):62–70.
26.
27.
go back to reference Hasselt HV, Guez A, Silver D. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI conference on artificial intelligence. 2016;30. Hasselt HV, Guez A, Silver D. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI conference on artificial intelligence. 2016;30.
29.
go back to reference Jalilibal Z, Amiri A, Castagliola P, Khoo MB. Monitoring the coefficient of variation: A literature review. Comput Ind Eng. 2021;161:107600. Jalilibal Z, Amiri A, Castagliola P, Khoo MB. Monitoring the coefficient of variation: A literature review. Comput Ind Eng. 2021;161:107600.
Metadata
Title
A Data-Driven Energy Management Strategy Based on Deep Reinforcement Learning for Microgrid Systems
Authors
Gang Bao
Rui Xu
Publication date
05-01-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10106-3

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner