Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-01-2021 | Issue 1/2021

Journal of Network and Systems Management 1/2021

A Data-driven, Multi-setpoint Model Predictive Thermal Control System for Data Centers

Journal:
Journal of Network and Systems Management > Issue 1/2021
Authors:
SeyedMorteza Mirhoseininejad, Ghada Badawy, Douglas G. Down
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This paper presents a system for jointly managing cooling units and workload assignment in modular data centers. The system aims to minimize power consumption while respecting temperature constraints, all in a thermally heterogeneous environment. Unlike traditional cooling controllers, which may over/under cool certain areas in the data center due to the use of a single setpoint, our framework does not have a single setpoint to satisfy. Instead, using a data-driven thermal model, the proposed system generates an optimal temperature map, the required temperature distribution matrix (RTDM), to be used by the controller, eliminating under/over cooling and improving power efficiency. The RTDM is the resulting temperature distribution when jointly considering workload assignment and cooling control. In addition, we propose the use of model predictive control (MPC) to regulate the operational variables of cooling units in a power-efficient fashion to comply with the RTDM. Within each iteration of the MPC loop, an optimization problem involving the thermal model is solved, and the underlying thermal model is updated. To prove the feasibility of the proposed power efficient system, it has been implemented on an actual modular data center in our facilities. Results from the implementation show the potential for considerable power savings compared to other control methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2021

Journal of Network and Systems Management 1/2021 Go to the issue

Premium Partner

    Image Credits