Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

A Database of Hilbert Modular Forms

Authors : Steve Donnelly, John Voight

Published in: Arithmetic Geometry, Number Theory, and Computation

Publisher: Springer International Publishing

share
SHARE

Abstract

We describe the computation of tables of Hilbert modular forms of parallel weight 2 over totally real fields.
Literature
1.
go back to reference Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John Cremona, Maarten Derickx, David Lowry-Duda, Min Lee, David Roe, Andrew V. Sutherland, and John Voight, Computing classical modular forms, Arithmetic Geometry, Number Theory, and Computation, eds. Jennifer S. Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Andrew V. Sutherland, John Voight, Simons Symposia, Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-80914-0_​4 Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John Cremona, Maarten Derickx, David Lowry-Duda, Min Lee, David Roe, Andrew V. Sutherland, and John Voight, Computing classical modular forms, Arithmetic Geometry, Number Theory, and Computation, eds. Jennifer S. Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Andrew V. Sutherland, John Voight, Simons Symposia, Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-80914-0_​4
2.
go back to reference B. J. Birch and W. Kuyk (eds.), Modular functions of one variable IV, Lecture Notes in Mathematics, vol. 476, Springer-Verlag, 1975. B. J. Birch and W. Kuyk (eds.), Modular functions of one variable IV, Lecture Notes in Mathematics, vol. 476, Springer-Verlag, 1975.
3.
go back to reference Jonathan Bober, Alyson Deines, Ariah Klages-Mundt, Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, Paul Sharaba, and William Stein, A database of elliptic curves over \(\mathbb Q(\sqrt {5})\): a first report, ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium, eds. Everett W. Howe and Kiran S. Kedlaya, Open Book Series 1, 2013, 145–166. Jonathan Bober, Alyson Deines, Ariah Klages-Mundt, Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, Paul Sharaba, and William Stein, A database of elliptic curves over \(\mathbb Q(\sqrt {5})\): a first report, ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium, eds. Everett W. Howe and Kiran S. Kedlaya, Open Book Series 1, 2013, 145–166.
4.
go back to reference Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265. MathSciNetCrossRef Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265. MathSciNetCrossRef
5.
go back to reference Nils Bruin, E. Victor Flynn, Josep González and Victor Rotger, On finiteness conjectures for modular quaternion algebras, Math. Proc. Cam. Phil. Soc. 141 (2006), 383–408. CrossRef Nils Bruin, E. Victor Flynn, Josep González and Victor Rotger, On finiteness conjectures for modular quaternion algebras, Math. Proc. Cam. Phil. Soc. 141 (2006), 383–408. CrossRef
6.
go back to reference Henri Cohen, A course in computational number theory, Springer-Verlag, Berlin, 1993. MATH Henri Cohen, A course in computational number theory, Springer-Verlag, Berlin, 1993. MATH
7.
go back to reference L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms, Math. Comp. 76 (2007), no. 258, 1039–1057. MathSciNetCrossRef L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms, Math. Comp. 76 (2007), no. 258, 1039–1057. MathSciNetCrossRef
8.
go back to reference L. Dembélé and S. Donnelly, Computing Hilbert modular forms over fields with nontrivial class group, Algorithmic number theory (Banff, 2008), eds. Alfred van der Poorten and Andreas Stein, Lecture notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, 371–386. L. Dembélé and S. Donnelly, Computing Hilbert modular forms over fields with nontrivial class group, Algorithmic number theory (Banff, 2008), eds. Alfred van der Poorten and Andreas Stein, Lecture notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, 371–386.
9.
go back to reference Lassina Dembélé and John Voight, Explicit methods for Hilbert modular forms, Elliptic curves, Hilbert modular forms and Galois deformations, Birkhauser, Basel, 2013, 135–198. Lassina Dembélé and John Voight, Explicit methods for Hilbert modular forms, Elliptic curves, Hilbert modular forms and Galois deformations, Birkhauser, Basel, 2013, 135–198.
10.
11.
go back to reference Matthew Greenberg and John Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms, Math. Comp. 80 (2011), 1071–1092. MathSciNetCrossRef Matthew Greenberg and John Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms, Math. Comp. 80 (2011), 1071–1092. MathSciNetCrossRef
12.
go back to reference Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. (SICOMP) 39 (2010), no. 5, 1714–1747. MathSciNetCrossRef Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. (SICOMP) 39 (2010), no. 5, 1714–1747. MathSciNetCrossRef
14.
go back to reference T. R. Shemanske and L. Walling, Twists of Hilbert modular forms, Trans. Amer. Math. Soc. 338 (1993), no. 1, 375–403. MathSciNetCrossRef T. R. Shemanske and L. Walling, Twists of Hilbert modular forms, Trans. Amer. Math. Soc. 338 (1993), no. 1, 375–403. MathSciNetCrossRef
15.
go back to reference John Voight, Computing fundamental domains for Fuchsian groups, J. Théorie Nombres Bordeaux 21 (2009), no. 2, 467–489. MathSciNetCrossRef John Voight, Computing fundamental domains for Fuchsian groups, J. Théorie Nombres Bordeaux 21 (2009), no. 2, 467–489. MathSciNetCrossRef
16.
go back to reference John Voight, Computing automorphic forms on Shimura curves over fields with arbitrary class number, Algorithmic number theory (ANTS IX, Nancy, France, 2010), eds. Guillaume Hanrot, Francois Morain, and Emmanuel Thomé, Lecture Notes in Comp. Sci., vol. 6197, Springer, Berlin, 2010, 357–371. John Voight, Computing automorphic forms on Shimura curves over fields with arbitrary class number, Algorithmic number theory (ANTS IX, Nancy, France, 2010), eds. Guillaume Hanrot, Francois Morain, and Emmanuel Thomé, Lecture Notes in Comp. Sci., vol. 6197, Springer, Berlin, 2010, 357–371.
Metadata
Title
A Database of Hilbert Modular Forms
Authors
Steve Donnelly
John Voight
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-80914-0_12

Premium Partner