Skip to main content
Top
Published in: Mobile Networks and Applications 4/2020

08-06-2020

A DE-ANN Inspired Skin Cancer Detection Approach Using Fuzzy C-Means Clustering

Authors: Manoj Kumar, Mohammed Alshehri, Rayed AlGhamdi, Purushottam Sharma, Vikas Deep

Published in: Mobile Networks and Applications | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As per recent developments in medical science, the skin cancer is considered as one of the common type disease in human body. Although the presence of melanoma is viewed as a form of cancer, it is challenging to predict it. If melanoma or other skin diseases are identified in the early stages, prognosis can then be successfully achieved to cure them. For this, medical imaging science plays an essential role in detecting such types of skin lesions quickly and accurately. The application of our approaches is to improve skin cancer detection accuracy in medical imaging and further, can be automated using electronic devices such as mobile phones etc. In the proposed paper, an improved strategy to detect three type of skin cancers in early stages are suggested. The considered input is a skin lesion image which by using the proposed method, the system would classify it into cancerous or non-cancerous type of skin. The image segmentation is implemented using fuzzy C-means clustering to separate homogeneous image regions. The preprocessing is done using different filters to enhance the image attributes while the other features are assessed by implementing rgb color-space, Local Binary Pattern (LBP) and GLCM methods altogether. Further, for classification, artificial neural network (ANN) is trained using differential evolution (DE) algorithm. Various features are accurately estimated to achieve better results using skin cancer image datasets namely HAM10000 and PH2. The novelty of the work suggests that DE-ANN is best compared among other traditional classifiers in terms of detection accuracy as discussed in result section of this paper. The simulated result shows that the proposed technique effectually detects skin cancer and produces an accuracy of 97.4%. The results are highly accurate compare to other traditional approaches in the same domain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Jain S, Jagtap V, Pise N (2015) Computer aided melanoma skin Cancer detection using image processing. Prog Comput Sci 48(2015):735–740CrossRef Jain S, Jagtap V, Pise N (2015) Computer aided melanoma skin Cancer detection using image processing. Prog Comput Sci 48(2015):735–740CrossRef
2.
go back to reference Amirjahan M, Sujatha N (2016) Comparative analysis of various classification algorithms for skin Cancer detection. Int J Emerg Technol Eng Res 4(7):199–205 Amirjahan M, Sujatha N (2016) Comparative analysis of various classification algorithms for skin Cancer detection. Int J Emerg Technol Eng Res 4(7):199–205
3.
go back to reference Aegerter P, Aegerter P, Aegerter P, Saiag P (2001) Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma? Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Arch Dermatol 137(10):1343–1350 Aegerter P, Aegerter P, Aegerter P, Saiag P (2001) Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma? Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Arch Dermatol 137(10):1343–1350
4.
go back to reference Argenziano G, Soyer H, Chimenti S, Talamini R, Corona R, Sera F, Binder M (2003) Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J Am Acad Dermatol 48:679–693CrossRef Argenziano G, Soyer H, Chimenti S, Talamini R, Corona R, Sera F, Binder M (2003) Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J Am Acad Dermatol 48:679–693CrossRef
5.
go back to reference Yadav N, Narang VK, Shrivastava U (2016) Skin diseases detection models using image. Int J Comput Appl 137(12):0975–8887 Yadav N, Narang VK, Shrivastava U (2016) Skin diseases detection models using image. Int J Comput Appl 137(12):0975–8887
6.
go back to reference Arora G, Dubey AK, Jaffery ZA (2018) Classifiers for the detection of skin Cancer, in smart computing and informatics. Springer, Singapore Arora G, Dubey AK, Jaffery ZA (2018) Classifiers for the detection of skin Cancer, in smart computing and informatics. Springer, Singapore
7.
go back to reference Hameed N, Shabut AM, Hossain MA (2018) Multi-class skin diseases classification using, in 12th international conference on software. Knowledge, Information Management & Applications (SKIMA), IEEE Hameed N, Shabut AM, Hossain MA (2018) Multi-class skin diseases classification using, in 12th international conference on software. Knowledge, Information Management & Applications (SKIMA), IEEE
8.
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer. Standford University Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer. Standford University
9.
go back to reference Zhao J, Lui H, Kalia S, Zeng H (2015) Real-time Raman spectroscopy for automatic in vivo skin cancer detection: an independent validation. Anal Bioanal Chem 407(27):8373–8379CrossRef Zhao J, Lui H, Kalia S, Zeng H (2015) Real-time Raman spectroscopy for automatic in vivo skin cancer detection: an independent validation. Anal Bioanal Chem 407(27):8373–8379CrossRef
10.
go back to reference Georgakopoulos SV, Kottari K, Delibasis K, Plagianakos VP, Maglogiannis I (2018) Improving the performance of convolutional neural network for skin image classification using the response of image analysis filters. Neural Comput & Applic 1–18. https://doi.org/10.1007/s00521-018-3711-y Georgakopoulos SV, Kottari K, Delibasis K, Plagianakos VP, Maglogiannis I (2018) Improving the performance of convolutional neural network for skin image classification using the response of image analysis filters. Neural Comput & Applic 1–18. https://​doi.​org/​10.​1007/​s00521-018-3711-y
11.
go back to reference Dorj UO, Lee KK, Choi JY, Lee M (2018) The skin cancer classification using deep convolutional neural network. Multimed Tools Appl 77(8):1–16CrossRef Dorj UO, Lee KK, Choi JY, Lee M (2018) The skin cancer classification using deep convolutional neural network. Multimed Tools Appl 77(8):1–16CrossRef
13.
go back to reference Li Y, Shen L (2018) Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2):556CrossRef Li Y, Shen L (2018) Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2):556CrossRef
14.
go back to reference Razmjooy N, Sheykhahmad FR, Ghadimi N (2018) A hybrid neural network–world cup optimization algorithm for melanoma detection. Open Med 3(1):9–16CrossRef Razmjooy N, Sheykhahmad FR, Ghadimi N (2018) A hybrid neural network–world cup optimization algorithm for melanoma detection. Open Med 3(1):9–16CrossRef
15.
go back to reference Tang TY, Zhanga L, Neohb SC, Limc CP (2018) Intelligent skin cancer detection using enhanced particle swarm optimization. Knowl-Based Syst 158:118–135CrossRef Tang TY, Zhanga L, Neohb SC, Limc CP (2018) Intelligent skin cancer detection using enhanced particle swarm optimization. Knowl-Based Syst 158:118–135CrossRef
16.
go back to reference Salem C, Azar D, Tokajian S (2018) An image processing and genetic algorithmbased approach for the detection of melanoma in patients. Methods Inf Med 57(01):74–80 Salem C, Azar D, Tokajian S (2018) An image processing and genetic algorithmbased approach for the detection of melanoma in patients. Methods Inf Med 57(01):74–80
17.
go back to reference Huang L, Zhao YG, Yang TJ (2019) Skin lesion segmentation using object scaleoriented fully convolutional neural networks. SIViP:1–8 Huang L, Zhao YG, Yang TJ (2019) Skin lesion segmentation using object scaleoriented fully convolutional neural networks. SIViP:1–8
18.
go back to reference Barata C, Celebi ME, Marques JS (2018) A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J Biomed Health Inform 23(3):1096–1109CrossRef Barata C, Celebi ME, Marques JS (2018) A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J Biomed Health Inform 23(3):1096–1109CrossRef
19.
go back to reference Zhang X, Zhao S (2018) Segmentation preprocessing and deep learning based classification of skin lesions. J Med Imag Health Inform 8(7):1408–1414(7)CrossRef Zhang X, Zhao S (2018) Segmentation preprocessing and deep learning based classification of skin lesions. J Med Imag Health Inform 8(7):1408–1414(7)CrossRef
20.
go back to reference Pomponiu V, Nejati H, Cheung NM (2016) DEEPMOLE: deep neural networks for skin mole lesion classification, in IEEE international conference on image processing (ICIP). Phoenix, AZ Pomponiu V, Nejati H, Cheung NM (2016) DEEPMOLE: deep neural networks for skin mole lesion classification, in IEEE international conference on image processing (ICIP). Phoenix, AZ
21.
go back to reference Ech-Cherif A, Misbhauddin M, Ech-Cherif M (2019) Deep neural network based Mobile Dermoscopy application for triaging skin Cancer detection, in 2nd international conference on computer applications & information security (ICCAIS), Riyadh Ech-Cherif A, Misbhauddin M, Ech-Cherif M (2019) Deep neural network based Mobile Dermoscopy application for triaging skin Cancer detection, in 2nd international conference on computer applications & information security (ICCAIS), Riyadh
22.
go back to reference Mohamed A, Mohamed WA, Zekry AH (2019) Deep learning can improve early skin Cancer detection. Intl J Electron Telecommun 65(3):507–512 Mohamed A, Mohamed WA, Zekry AH (2019) Deep learning can improve early skin Cancer detection. Intl J Electron Telecommun 65(3):507–512
23.
go back to reference Goyal V, Singh G, Tiwari O, Punia S, Kumar M (2019) Intelligent Skin Cancer Detection Mobile Application Using Convolution Neural Network. J Adv Res Dyn Control Syst (JARCDS) 11(7(SI)):253–259 Goyal V, Singh G, Tiwari O, Punia S, Kumar M (2019) Intelligent Skin Cancer Detection Mobile Application Using Convolution Neural Network. J Adv Res Dyn Control Syst (JARCDS) 11(7(SI)):253–259
24.
go back to reference Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural networks. Neural Process Lett 17(1):93–105CrossRef Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural networks. Neural Process Lett 17(1):93–105CrossRef
25.
go back to reference Wang L, Zeng Y, Chen T (2015) Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst Appl 42(2):855–863CrossRef Wang L, Zeng Y, Chen T (2015) Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst Appl 42(2):855–863CrossRef
26.
go back to reference Leema N, Nehemiah HK, Kannan A (2016) Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets. Appl Soft Comput 49:834–844CrossRef Leema N, Nehemiah HK, Kannan A (2016) Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets. Appl Soft Comput 49:834–844CrossRef
29.
go back to reference Cai W, Chen S Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40:825–838 Cai W, Chen S Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40:825–838
30.
go back to reference Szilágyi L, Benyó Z, Szilágyi SM, Adam HS (2003) MR brain image segmentation using an enhanced fuzzy C-means algorithm. In: 25th annual international conference of the IEEE engineering in medicine and biology society. Cancun, Mexico Szilágyi L, Benyó Z, Szilágyi SM, Adam HS (2003) MR brain image segmentation using an enhanced fuzzy C-means algorithm. In: 25th annual international conference of the IEEE engineering in medicine and biology society. Cancun, Mexico
31.
go back to reference Ojala T, Pietikainen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987MATHCrossRef Ojala T, Pietikainen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987MATHCrossRef
32.
go back to reference Gevers T, Weijer JVD, Stokman H (2011) Color feature detection. In: Color Image Processing: methods and applications. CRC Press, pp 2–27 Gevers T, Weijer JVD, Stokman H (2011) Color feature detection. In: Color Image Processing: methods and applications. CRC Press, pp 2–27
33.
go back to reference Slowik A, Bialko M (2008) Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on Human System Interactions. IEEE 60–65 Slowik A, Bialko M (2008) Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on Human System Interactions. IEEE 60–65
35.
go back to reference Baratloo A, Hosseini M, Negida A, Ashal GE (2015) Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emergency (Tehran):PMC4614595 3(2):48–49 Baratloo A, Hosseini M, Negida A, Ashal GE (2015) Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emergency (Tehran):PMC4614595 3(2):48–49
36.
go back to reference Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machinest. ACM Trans Intell Syst Technol 2(3):27:1–27:27CrossRef Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machinest. ACM Trans Intell Syst Technol 2(3):27:1–27:27CrossRef
38.
go back to reference Ahmad F, Mat-Isa NA, Hussain Z, Boudville R, Osman MK (2010) Genetic algorithm-artificial neural network (GA-ANN) hybrid intelligence for cancer diagnosis. In: 2nd IEEE International Conference on Computational Intelligence, Communication Systems and Networks 78–83 Ahmad F, Mat-Isa NA, Hussain Z, Boudville R, Osman MK (2010) Genetic algorithm-artificial neural network (GA-ANN) hybrid intelligence for cancer diagnosis. In: 2nd IEEE International Conference on Computational Intelligence, Communication Systems and Networks 78–83
39.
go back to reference Almansour E, Jaffar MA (2016) Classification of dermoscopic skin cancer images using color and hybrid texture features. Int J Comp Sci Net Sec 16(4):135–139 Almansour E, Jaffar MA (2016) Classification of dermoscopic skin cancer images using color and hybrid texture features. Int J Comp Sci Net Sec 16(4):135–139
40.
go back to reference Giotis I, Molders N, Land S, Biehl M, Jonkman MF, Petkova N (2015) MEDNODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst Appl 42(19):6578–6585CrossRef Giotis I, Molders N, Land S, Biehl M, Jonkman MF, Petkova N (2015) MEDNODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst Appl 42(19):6578–6585CrossRef
Metadata
Title
A DE-ANN Inspired Skin Cancer Detection Approach Using Fuzzy C-Means Clustering
Authors
Manoj Kumar
Mohammed Alshehri
Rayed AlGhamdi
Purushottam Sharma
Vikas Deep
Publication date
08-06-2020
Publisher
Springer US
Published in
Mobile Networks and Applications / Issue 4/2020
Print ISSN: 1383-469X
Electronic ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-020-01550-2

Other articles of this Issue 4/2020

Mobile Networks and Applications 4/2020 Go to the issue