Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 8/2020

25-04-2020 | Research Article-Electrical Engineering

RETRACTED ARTICLE: A Decentralized Dynamic Marketing-Based Demand Response Using Electric Vehicles in Smart Grid

Author: Ubaid ur Rehman

Published in: Arabian Journal for Science and Engineering | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to different energy storage capabilities of electric vehicles and their unpredicted charging/discharging patterns, the load uncertainty has significantly increased on the utility grid. This load uncertainty has also enabled the elasticity in the power production through intermittent energy resources. This emerging electricity generation elasticity could be used to optimize aggregator load profile by altering real-time demand of a power network, particularly in the premises of a massively EVs surrounded grid. In this paper, we have proposed a demand response algorithm to optimize vehicle to grid (V2G) aggregation, by enabling EVs scheduled charging/discharging, in quest to minimize the energy cost for the retailer, as well as satisfying the electricity market, i.e., day-ahead and instantaneous real-time markets. We have employed a decentralized approach in our proposed scheme, which is accessible, allows fast convergence, and assures consumers’ privacy. The simulation results show that our proposed technique significantly reduces the energy cost, explicitly for a retailer who tends to optimize the power network by penetrating an efficient algorithm. In addition, our algorithm shows more relevance when the grid leniently manages several intermittent energy generation resources. Practically the real-time load variations are uncertain, and are difficult to control, which increases the power and cost variations, and some time ends up as complete system failure. By using this algorithm the energy retailers can offer reliable service and suitable tariffs to consumers, to prove relevancy by restricting such constraints.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, Y.; He, H.; Peng, J.; Wang, H.: Deep reinforcement learning-based energy management for a series hybrid electric vehicle enabled by history cumulative trip information. IEEE Trans. Veh. Technol. 68(8), 7416–7430 (2019)CrossRef Li, Y.; He, H.; Peng, J.; Wang, H.: Deep reinforcement learning-based energy management for a series hybrid electric vehicle enabled by history cumulative trip information. IEEE Trans. Veh. Technol. 68(8), 7416–7430 (2019)CrossRef
2.
go back to reference Yi, Z.; Bauer, P.H.: Optimal stochastic eco-routing solutions for electric vehicles. IEEE Trans. Intell. Transp. Syst. 19(12), 3807–3817 (2018)CrossRef Yi, Z.; Bauer, P.H.: Optimal stochastic eco-routing solutions for electric vehicles. IEEE Trans. Intell. Transp. Syst. 19(12), 3807–3817 (2018)CrossRef
3.
go back to reference Ito, A.; Kawashima, A.; Suzuki, T.; Inagaki, S.; Yamaguchi, T.; Zhou, Z.: Model predictive charging control of in-vehicle batteries for home energy management based on vehicle state prediction. IEEE TransControl Syst Technol 26(1), 51–64 (2018)CrossRef Ito, A.; Kawashima, A.; Suzuki, T.; Inagaki, S.; Yamaguchi, T.; Zhou, Z.: Model predictive charging control of in-vehicle batteries for home energy management based on vehicle state prediction. IEEE TransControl Syst Technol 26(1), 51–64 (2018)CrossRef
4.
go back to reference ur Rehman, U.; Riaz, M.: Vehicle to grid system for load and frequency management in smart grid. In: 2017 International Conference on Open Source Systems & Technologies (ICOSST) ur Rehman, U.; Riaz, M.: Vehicle to grid system for load and frequency management in smart grid. In: 2017 International Conference on Open Source Systems & Technologies (ICOSST)
5.
go back to reference Denis, N.; Dubois, M.R.; Trovão, J.P.F.; Desrochers, A.: Power split strategy optimization of a plug-in parallel hybrid electric vehicle. IEEE Trans. Veh. Technol. 67(1), 315–326 (2018)CrossRef Denis, N.; Dubois, M.R.; Trovão, J.P.F.; Desrochers, A.: Power split strategy optimization of a plug-in parallel hybrid electric vehicle. IEEE Trans. Veh. Technol. 67(1), 315–326 (2018)CrossRef
7.
go back to reference ur Rehman, U.: Profitable load scheduling scheme for plugged in hybrid electric vehicles BESs in smart grid. In: 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) ur Rehman, U.: Profitable load scheduling scheme for plugged in hybrid electric vehicles BESs in smart grid. In: 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)
8.
go back to reference Gupta, V.; Konda, S.R.; Kumar, R.; Panigrahi, B.K.: Multiaggregator collaborative electric vehicle charge scheduling under variable energy purchase and EV cancelation events. IEEE Trans. Ind. Inf. 14(7), 2894–2902 (2018)CrossRef Gupta, V.; Konda, S.R.; Kumar, R.; Panigrahi, B.K.: Multiaggregator collaborative electric vehicle charge scheduling under variable energy purchase and EV cancelation events. IEEE Trans. Ind. Inf. 14(7), 2894–2902 (2018)CrossRef
9.
go back to reference del Razo, V.; Jacobsen, H.-A.: Smart charging schedules for highway travel with electric vehicles. IEEE Trans. Transp. Electr. 2(2), 160–173 (2016)CrossRef del Razo, V.; Jacobsen, H.-A.: Smart charging schedules for highway travel with electric vehicles. IEEE Trans. Transp. Electr. 2(2), 160–173 (2016)CrossRef
10.
go back to reference Mohsenian-Rad, H.; Ghamkhari, M.: Optimal charging of electric vehicles with uncertain departure times: a closed-form solution. IEEE Trans. Smart Grid 6(2), 940–942 (2015)CrossRef Mohsenian-Rad, H.; Ghamkhari, M.: Optimal charging of electric vehicles with uncertain departure times: a closed-form solution. IEEE Trans. Smart Grid 6(2), 940–942 (2015)CrossRef
11.
go back to reference Xu, Y.; Pan, F.; Tong, L.: Dynamic scheduling for charging electric vehicles: a priority rule. IEEE Trans. Autom. Control 61(12), 4094–4099 (2016)MathSciNetCrossRefMATH Xu, Y.; Pan, F.; Tong, L.: Dynamic scheduling for charging electric vehicles: a priority rule. IEEE Trans. Autom. Control 61(12), 4094–4099 (2016)MathSciNetCrossRefMATH
12.
go back to reference Liu, Z.; Wu, Q.; Huang, S.; Wang, L.; Shahidehpour, M.; Xue, Y.: Optimal day-ahead charging scheduling of electric vehicles through an aggregative game model. IEEE Trans. Smart Grid 9(5), 5173–5184 (2018)CrossRef Liu, Z.; Wu, Q.; Huang, S.; Wang, L.; Shahidehpour, M.; Xue, Y.: Optimal day-ahead charging scheduling of electric vehicles through an aggregative game model. IEEE Trans. Smart Grid 9(5), 5173–5184 (2018)CrossRef
13.
go back to reference Li, Y.; Li, K.: Incorporating demand response of electric vehicles in scheduling of isolated microgrids with renewables using a bi-level programming approach. IEEE Access 7, 116256–116266 (2019)CrossRef Li, Y.; Li, K.: Incorporating demand response of electric vehicles in scheduling of isolated microgrids with renewables using a bi-level programming approach. IEEE Access 7, 116256–116266 (2019)CrossRef
14.
go back to reference Zhu, X.; Han, H.; Gao, S.; Shi, Q.; Cui, H.; Zu, G.: A multi-stage optimization approach for active distribution network scheduling considering coordinated electrical vehicle charging strategy. IEEE Access 6, 50117–50130 (2018)CrossRef Zhu, X.; Han, H.; Gao, S.; Shi, Q.; Cui, H.; Zu, G.: A multi-stage optimization approach for active distribution network scheduling considering coordinated electrical vehicle charging strategy. IEEE Access 6, 50117–50130 (2018)CrossRef
15.
go back to reference Tan, X.; Qu, G.; Sun, B.; Li, N.; Tsang, D.H.K.: Optimal scheduling of battery charging station serving electric vehicles based on battery swapping. IEEE Trans. Smart Grid 10(2), 1372–1384 (2019)CrossRef Tan, X.; Qu, G.; Sun, B.; Li, N.; Tsang, D.H.K.: Optimal scheduling of battery charging station serving electric vehicles based on battery swapping. IEEE Trans. Smart Grid 10(2), 1372–1384 (2019)CrossRef
16.
go back to reference Mehrabi, A.; Kim, K.: Low-complexity charging/discharging scheduling for electric vehicles at home and common lots for smart households prosumers. IEEE Trans. Consumer Electron. 64(3), 348–355 (2018)CrossRef Mehrabi, A.; Kim, K.: Low-complexity charging/discharging scheduling for electric vehicles at home and common lots for smart households prosumers. IEEE Trans. Consumer Electron. 64(3), 348–355 (2018)CrossRef
17.
go back to reference Kang, A.; Feng, S.; Zhou, M.; Ammari, A.C.; Sedraoui, K.: Optimal load scheduling of plug-in hybrid electric vehicles via weight-aggregation multi-objective evolutionary. IEEE Trans. Intell. Transp. Syst 18(9), 2557–2568 (2017)CrossRef Kang, A.; Feng, S.; Zhou, M.; Ammari, A.C.; Sedraoui, K.: Optimal load scheduling of plug-in hybrid electric vehicles via weight-aggregation multi-objective evolutionary. IEEE Trans. Intell. Transp. Syst 18(9), 2557–2568 (2017)CrossRef
18.
go back to reference Wang, D.; Guan, X.; Wu, J.; Li, P.; Zan, P.; Xu, H.: Integrated energy exchange scheduling for multimicrogrid system with electric vehicles. IEEE Trans. Smart Grid 7(4), 1762–1774 (2016)CrossRef Wang, D.; Guan, X.; Wu, J.; Li, P.; Zan, P.; Xu, H.: Integrated energy exchange scheduling for multimicrogrid system with electric vehicles. IEEE Trans. Smart Grid 7(4), 1762–1774 (2016)CrossRef
19.
go back to reference Xing, H.; Fu, M.; Lin, Z.; Mou, Y.: Decentralized optimal scheduling for charging and discharging of plug-in electric vehicles in smart grids. IEEE Trans. Power Syst. 31(5), 4118–4127 (2016)CrossRef Xing, H.; Fu, M.; Lin, Z.; Mou, Y.: Decentralized optimal scheduling for charging and discharging of plug-in electric vehicles in smart grids. IEEE Trans. Power Syst. 31(5), 4118–4127 (2016)CrossRef
20.
go back to reference Gusrialdi, A.; Qu, Z.; Simaan, M.A.: Distributed scheduling and cooperative control for charging of electric vehicles at highway service stations. IEEE Trans. Intell. Transp. Syst. 18(10), 2713–2727 (2017)CrossRef Gusrialdi, A.; Qu, Z.; Simaan, M.A.: Distributed scheduling and cooperative control for charging of electric vehicles at highway service stations. IEEE Trans. Intell. Transp. Syst. 18(10), 2713–2727 (2017)CrossRef
21.
go back to reference Maigha,; Crow, M.L.: Electric vehicle scheduling considering co-optimized customer and system objectives. IEEE Trans. Sustain. Energy 9(1), 410–419 (2018)CrossRef Maigha,; Crow, M.L.: Electric vehicle scheduling considering co-optimized customer and system objectives. IEEE Trans. Sustain. Energy 9(1), 410–419 (2018)CrossRef
22.
go back to reference Zhao, J.; Wan, C.; Xu, Z.; Wang, J.: Risk-based day-ahead scheduling of electric vehicle aggregator using information gap decision theory. IEEE Trans. Smart Grid 8(4), 1609–1618 (2017)CrossRef Zhao, J.; Wan, C.; Xu, Z.; Wang, J.: Risk-based day-ahead scheduling of electric vehicle aggregator using information gap decision theory. IEEE Trans. Smart Grid 8(4), 1609–1618 (2017)CrossRef
23.
go back to reference Maalej, K.; Kelouwani, S.; Agbossou, K.; Dubé, Y.; Henao, N.: Long-trip optimal energy planning with online mass estimation for battery electric vehicles. IEEE Trans. Veh. Technol. 64(11), 4929–4941 (2015)CrossRef Maalej, K.; Kelouwani, S.; Agbossou, K.; Dubé, Y.; Henao, N.: Long-trip optimal energy planning with online mass estimation for battery electric vehicles. IEEE Trans. Veh. Technol. 64(11), 4929–4941 (2015)CrossRef
24.
go back to reference Monteiro, V.; Exposto, B.; Ferreira, J.C.; Afonso, J.L.: Improved vehicle-to-home (iV2H) operation mode: experimental analysis of the electric vehicle as off-line UPS. IEEE Trans. Smart Grid 8(6), 2702–2711 (2017)CrossRef Monteiro, V.; Exposto, B.; Ferreira, J.C.; Afonso, J.L.: Improved vehicle-to-home (iV2H) operation mode: experimental analysis of the electric vehicle as off-line UPS. IEEE Trans. Smart Grid 8(6), 2702–2711 (2017)CrossRef
26.
go back to reference Kim, B.-G.; Ren, S.; van der Schaar, M.; Lee, J.-W.: Bidirectional energy trading and residential load scheduling with electric vehicles in the smart grid. IEEE J. Sel. Areas Commun. 31(7), 1219–1234 (2013)CrossRef Kim, B.-G.; Ren, S.; van der Schaar, M.; Lee, J.-W.: Bidirectional energy trading and residential load scheduling with electric vehicles in the smart grid. IEEE J. Sel. Areas Commun. 31(7), 1219–1234 (2013)CrossRef
27.
go back to reference Chung, H.-M.; Li, W.-T.; Yuen, C.; Wen, C.-K.; Crespi, N.: Electric vehicle charge scheduling mechanism to maximize cost efficiency and user convenience. IEEE Trans. Smart Grid 10(3), 3020–3030 (2019)CrossRef Chung, H.-M.; Li, W.-T.; Yuen, C.; Wen, C.-K.; Crespi, N.: Electric vehicle charge scheduling mechanism to maximize cost efficiency and user convenience. IEEE Trans. Smart Grid 10(3), 3020–3030 (2019)CrossRef
28.
go back to reference Lam, A.Y.S.; Yu, J.J.Q.; Hou, Y.; Li, V.O.K.: Coordinated autonomous vehicle parking for vehicle-to-grid services: formulation and distributed algorithm. IEEE Trans. Smart Grid 9(5), 4356–4366 (2018)CrossRef Lam, A.Y.S.; Yu, J.J.Q.; Hou, Y.; Li, V.O.K.: Coordinated autonomous vehicle parking for vehicle-to-grid services: formulation and distributed algorithm. IEEE Trans. Smart Grid 9(5), 4356–4366 (2018)CrossRef
29.
go back to reference Vu, T.L.; Ayu, A.A.; Dhupia, J.S.; Kennedy, L.; Adnanes, A.K.: Power management for electric tugboats through operating load estimation. IEEE Trans. Control Syst. Technol. 23(6), 2375–2382 (2015)CrossRef Vu, T.L.; Ayu, A.A.; Dhupia, J.S.; Kennedy, L.; Adnanes, A.K.: Power management for electric tugboats through operating load estimation. IEEE Trans. Control Syst. Technol. 23(6), 2375–2382 (2015)CrossRef
30.
go back to reference Chen, X.; Leung, K.-C.; Lam, A.Y.S.; Hill, D.J.: Online scheduling for hierarchical vehicle-to-grid system: design, formulation, and algorithm. IEEE Trans. Veh. Technol. 68(2), 1302–1317 (2019)CrossRef Chen, X.; Leung, K.-C.; Lam, A.Y.S.; Hill, D.J.: Online scheduling for hierarchical vehicle-to-grid system: design, formulation, and algorithm. IEEE Trans. Veh. Technol. 68(2), 1302–1317 (2019)CrossRef
31.
go back to reference Sah, B.; Kumar, P.; Rayudu, R.; Bose, S.K.; Inala, K.P.: Impact of sampling in the operation of vehicle to grid and its mitigation. IEEE Trans. Ind. Inform. 15(7), 3923–3933 (2019)CrossRef Sah, B.; Kumar, P.; Rayudu, R.; Bose, S.K.; Inala, K.P.: Impact of sampling in the operation of vehicle to grid and its mitigation. IEEE Trans. Ind. Inform. 15(7), 3923–3933 (2019)CrossRef
32.
go back to reference Liu, Z.; Wu, Q.; Shahidehpour, M.; Li, C.; Huang, S.; Wei, W.: Transactive real-time electric vehicle charging management for commercial buildings with PV on-site generation. IEEE Trans. Smart Grid 10(5), 4939–4950 (2019)CrossRef Liu, Z.; Wu, Q.; Shahidehpour, M.; Li, C.; Huang, S.; Wei, W.: Transactive real-time electric vehicle charging management for commercial buildings with PV on-site generation. IEEE Trans. Smart Grid 10(5), 4939–4950 (2019)CrossRef
33.
go back to reference Samaranayake, L.; Longo, S.: Degradation control for electric vehicle machines using nonlinear model predictive control. IEEE Trans. Control Syst. Technol. 26(1), 89–101 (2018)CrossRef Samaranayake, L.; Longo, S.: Degradation control for electric vehicle machines using nonlinear model predictive control. IEEE Trans. Control Syst. Technol. 26(1), 89–101 (2018)CrossRef
34.
go back to reference Kaur, K.; Kumar, N.; Singh, M.: Coordinated power control of electric vehicles for grid frequency support: MILP-based hierarchical control design. IEEE Trans. Smart Grid 10(3), 364–3373 (2019)CrossRef Kaur, K.; Kumar, N.; Singh, M.: Coordinated power control of electric vehicles for grid frequency support: MILP-based hierarchical control design. IEEE Trans. Smart Grid 10(3), 364–3373 (2019)CrossRef
35.
go back to reference Turker, H.; Bacha, S.: Optimal minimization of plug-in electric vehicle charging cost with vehicle-to-home and vehicle-to-grid concepts. IEEE Trans. Veh. Technol. 67(11), 10281–10292 (2018)CrossRef Turker, H.; Bacha, S.: Optimal minimization of plug-in electric vehicle charging cost with vehicle-to-home and vehicle-to-grid concepts. IEEE Trans. Veh. Technol. 67(11), 10281–10292 (2018)CrossRef
36.
go back to reference Munshi, A.A.; Mohamed, Y.A.-R.I.: Extracting and defining flexibility of residential electrical vehicle charging loads. IEEE Trans. Ind. Inform. 14(2), 448–461 (2018)CrossRef Munshi, A.A.; Mohamed, Y.A.-R.I.: Extracting and defining flexibility of residential electrical vehicle charging loads. IEEE Trans. Ind. Inform. 14(2), 448–461 (2018)CrossRef
37.
go back to reference Yang, Y.; Jia, Q.-S.; Guan, X.; Zhang, X.; Qiu, Z.; Deconinck, G.: Decentralized EV-based charging optimization with building integrated wind energy. IEEE Trans. Autom. Sci. Eng 16(3), 1002–1017 (2019)CrossRef Yang, Y.; Jia, Q.-S.; Guan, X.; Zhang, X.; Qiu, Z.; Deconinck, G.: Decentralized EV-based charging optimization with building integrated wind energy. IEEE Trans. Autom. Sci. Eng 16(3), 1002–1017 (2019)CrossRef
38.
go back to reference Su, J.; Gao, R.; Husain, I.: Model predictive control based field-weakening strategy for traction EV used induction motor. IEEE Trans. Ind. Appl. 4(3), 2295–2305 (2018)CrossRef Su, J.; Gao, R.; Husain, I.: Model predictive control based field-weakening strategy for traction EV used induction motor. IEEE Trans. Ind. Appl. 4(3), 2295–2305 (2018)CrossRef
39.
go back to reference Monteiro, V.; Pinto, J.G.; Afonso, J.L.: Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes. IEEE Trans. Veh. Technol 65(3), 1007–1020 (2016)CrossRef Monteiro, V.; Pinto, J.G.; Afonso, J.L.: Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes. IEEE Trans. Veh. Technol 65(3), 1007–1020 (2016)CrossRef
40.
go back to reference Kumar-Nunna, H.S.V.S.; Battula, S.; Doolla, S.; Srinivasan, D.: Energy management in smart distribution systems with vehicle-to-grid integrated microgrids. IEEE Trans. Smart Grid PP(99), 1 (2018) Kumar-Nunna, H.S.V.S.; Battula, S.; Doolla, S.; Srinivasan, D.: Energy management in smart distribution systems with vehicle-to-grid integrated microgrids. IEEE Trans. Smart Grid PP(99), 1 (2018)
Metadata
Title
RETRACTED ARTICLE: A Decentralized Dynamic Marketing-Based Demand Response Using Electric Vehicles in Smart Grid
Author
Ubaid ur Rehman
Publication date
25-04-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 8/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04505-7

Other articles of this Issue 8/2020

Arabian Journal for Science and Engineering 8/2020 Go to the issue

Research Article-Computer Engineering and Computer Science

A Blockchain-Based Solution to Control Power Losses in Pakistan

Premium Partners