Skip to main content
Top
Published in:

01-12-2016 | Original Article

A deep learning approach for human behavior prediction with explanations in health social networks: social restricted Boltzmann machine (SRBM+)

Authors: Nhathai Phan, Dejing Dou, Brigitte Piniewski, David Kil

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Human behavior modeling is a key component in application domains such as healthcare and social behavior research. In addition to accurate prediction, having the capacity to understand the roles of human behavior determinants and to provide explanations for the predicted behaviors is also important. Having this capacity increases trust in the systems and the likelihood that the systems will be actually adopted, thus driving engagement and loyalty. However, most prediction models do not provide explanations for the behaviors they predict. In this paper, we study the research problem, human behavior prediction with explanations, for healthcare intervention systems in health social networks. In this work, we propose a deep learning model, named social restricted Boltzmann machine (SRBM), for human behavior modeling over undirected and nodes-attributed graphs. In the proposed SRBM+ model, we naturally incorporate self-motivation, implicit and explicit social influences, and environmental events together. Our model not only predicts human behaviors accurately, but also, for each predicted behavior, it generates explanations. Experimental results on real-world and synthetic health social networks confirm the accuracy of SRBM+ in human behavior prediction and its quality in human behavior explanation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bandura A (1989) Human agency in social cognitive theory. Am Psychol 44(9):1175–1184CrossRef Bandura A (1989) Human agency in social cognitive theory. Am Psychol 44(9):1175–1184CrossRef
go back to reference Barbieri N, Bonchi F, Manco F (2014) Who to follow and why: link prediction with explanations. In: KDD ’14, pp 1266–1275 Barbieri N, Bonchi F, Manco F (2014) Who to follow and why: link prediction with explanations. In: KDD ’14, pp 1266–1275
go back to reference Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, WadsworthMATH Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, WadsworthMATH
go back to reference Freitas AA (2014) Comprehensible classification models: a position paper. SIGKDD Explor Newslett 15(1):1–10CrossRef Freitas AA (2014) Comprehensible classification models: a position paper. SIGKDD Explor Newslett 15(1):1–10CrossRef
go back to reference Fung G, Sandilya S, Rao RB (2005) Rule extraction from linear support vector machines. In: KDD’05, pp 32–40 Fung G, Sandilya S, Rao RB (2005) Rule extraction from linear support vector machines. In: KDD’05, pp 32–40
go back to reference Kawale J, Pal A, Srivastava J (2009) Churn prediction in mmorpgs: a social influence based approach. In: CSE’09, pp 423–428 Kawale J, Pal A, Srivastava J (2009) Churn prediction in mmorpgs: a social influence based approach. In: CSE’09, pp 423–428
go back to reference Kil D, Shin F, Piniewski B, Hahn J, Chan K (2012) Impacts of social health data on predicting weight loss and engagement. In: O’Reilly StrataRx Conference Kil D, Shin F, Piniewski B, Hahn J, Chan K (2012) Impacts of social health data on predicting weight loss and engagement. In: O’Reilly StrataRx Conference
go back to reference Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
go back to reference Lerman K, Intagorn S, Kang JK, Ghosh R (2012) Using proximity to predict activity in social networks. In: WWW’12 Companion, pp 555–556 Lerman K, Intagorn S, Kang JK, Ghosh R (2012) Using proximity to predict activity in social networks. In: WWW’12 Companion, pp 555–556
go back to reference Li X, Du N, Li H, Li K, Gao J, Zhang A (2014) A deep learning approach to link prediction in dynamic networks. In: SDM’14, pp 289–297 Li X, Du N, Li H, Li K, Gao J, Zhang A (2014) A deep learning approach to link prediction in dynamic networks. In: SDM’14, pp 289–297
go back to reference Marshall A, Eakin E, Leslie E, Owen N (2005) Exploring the feasibility and acceptability of using internet technology to promote physical activity within a defined community. Health Promot J Aust 2005(16):82–84 Marshall A, Eakin E, Leslie E, Owen N (2005) Exploring the feasibility and acceptability of using internet technology to promote physical activity within a defined community. Health Promot J Aust 2005(16):82–84
go back to reference Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. Technical Report 1999-66, Stanford InfoLab Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. Technical Report 1999-66, Stanford InfoLab
go back to reference Pate R, Pratt M, Blair S et al (1995) Physical activity and public health: a recommendation from the centers for disease control and prevention and the american college of sports medicine. JAMA 273(5):402–407CrossRef Pate R, Pratt M, Blair S et al (1995) Physical activity and public health: a recommendation from the centers for disease control and prevention and the american college of sports medicine. JAMA 273(5):402–407CrossRef
go back to reference Phan N, Dou D, Piniewski B, Kil D (2015) Social restricted boltzmann machine: Human behavior prediction in health social networks. In: ASONAM’15, pp 424–431 Phan N, Dou D, Piniewski B, Kil D (2015) Social restricted boltzmann machine: Human behavior prediction in health social networks. In: ASONAM’15, pp 424–431
go back to reference Phan N, Dou D, Xiao X, Piniewski B, Kil D (2014) Analysis of physical activity propagation in a health social network. In: CIKM’14, pp 1329–1338 Phan N, Dou D, Xiao X, Piniewski B, Kil D (2014) Analysis of physical activity propagation in a health social network. In: CIKM’14, pp 1329–1338
go back to reference Poon H, Domingos P (2011) Sum-product networks: a new deep architecture. In: UAI’11, pp 337–346 Poon H, Domingos P (2011) Sum-product networks: a new deep architecture. In: UAI’11, pp 337–346
go back to reference Ryan RM, Deci EL (2000) Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp Educ Psychol 25(1):54–67CrossRef Ryan RM, Deci EL (2000) Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp Educ Psychol 25(1):54–67CrossRef
go back to reference Shen Y, Jin R, Dou D, Chowdhury N, Sun J, Piniewski B, Kil D (2012) Socialized gaussian process model for human behavior prediction in a health social network. In: ICDM’12, pp 1110–1115 Shen Y, Jin R, Dou D, Chowdhury N, Sun J, Piniewski B, Kil D (2012) Socialized gaussian process model for human behavior prediction in a health social network. In: ICDM’12, pp 1110–1115
go back to reference Siegel E (2013) Predictive analytics—the power to predict who will click, buy, lie or die. Wiley, Hoboken Siegel E (2013) Predictive analytics—the power to predict who will click, buy, lie or die. Wiley, Hoboken
go back to reference Smolensky P (1986) Information processing in dynamical systems: foundations of harmony theory. Parallel Distrib Process Explor Microstruct Cognit 1:194–281 Smolensky P (1986) Information processing in dynamical systems: foundations of harmony theory. Parallel Distrib Process Explor Microstruct Cognit 1:194–281
go back to reference Taylor G, Hinton G, Roweis S (2006) Modeling human motion using binary latent variables. In: NIPS’06, pp 1345–1352 Taylor G, Hinton G, Roweis S (2006) Modeling human motion using binary latent variables. In: NIPS’06, pp 1345–1352
go back to reference Ustun B, Rudin C (2014) Methods and models for interpretable linear classification. ArXiv e-prints Ustun B, Rudin C (2014) Methods and models for interpretable linear classification. ArXiv e-prints
go back to reference Van Assche A, Blockeel H (2007) Seeing the forest through the trees: learning a comprehensible model from an ensemble. In: ECML’07, vol 4701, pp 418–429 Van Assche A, Blockeel H (2007) Seeing the forest through the trees: learning a comprehensible model from an ensemble. In: ECML’07, vol 4701, pp 418–429
go back to reference Viswanath B, Mislove A, Cha M, Gummadi K (2009) On the evolution of user interaction in facebook. In: WOSN’09, pp 37–42 Viswanath B, Mislove A, Cha M, Gummadi K (2009) On the evolution of user interaction in facebook. In: WOSN’09, pp 37–42
go back to reference Yang J, Wei X, Ackerman M, Adamic L (2010) Activity lifespan: An analysis of user survival patterns in online knowledge sharing communities. In: ICWSM’10 Yang J, Wei X, Ackerman M, Adamic L (2010) Activity lifespan: An analysis of user survival patterns in online knowledge sharing communities. In: ICWSM’10
go back to reference Zaslavskiy M, Bach F, Vert JP (2008) A path following algorithm for graph matching. IEEE Trans Pattern Anal Mach Intell 5099:329–337 Zaslavskiy M, Bach F, Vert JP (2008) A path following algorithm for graph matching. IEEE Trans Pattern Anal Mach Intell 5099:329–337
go back to reference Zhu Y, Zhong E, Pan S, Wang X, Zhou M, Yang Q (2013) Predicting user activity level in social networks. In: CIKM’13, pp 159–168 Zhu Y, Zhong E, Pan S, Wang X, Zhou M, Yang Q (2013) Predicting user activity level in social networks. In: CIKM’13, pp 159–168
Metadata
Title
A deep learning approach for human behavior prediction with explanations in health social networks: social restricted Boltzmann machine (SRBM+)
Authors
Nhathai Phan
Dejing Dou
Brigitte Piniewski
David Kil
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0379-0

Premium Partner