Skip to main content
Top

2023 | OriginalPaper | Chapter

A Depth-Dependent Fiber-Bridging Model to Predict the Tensile Properties Recovery Induced by the Self-healing of Strain-Hardening Cementitious Composites

Authors : Yangqing Liu, Bo Wu, Jishen Qiu

Published in: Strain Hardening Cementitious Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The self-healing of strain-hardening cementitious composites (SHCCs) relies on the penetration of CO2 (or dissolved CO32−) into the cracks; some SHCCs mixed with special binders, e.g., the reactive magnesia cement (RMC)-based SHCC, even rely on carbonation to harden in the first place. As the carbonation degree decreases with matrix depth, it induces depth-dependent fiber-to-matrix interface properties in these scenarios. In this work, we present a new analytical model that captures the effect of depth-dependent carbonation and self-healing of RMC-based SHCC. In this model, the fiber-bridging tensile stress vs. crack width curve is formed by summing the tensile load vs. displacement relationship of individual fibers. On the single-fiber level, the debonding and slip-hardening of the fiber-to-matrix interface induced by a tensile preloading as well as the recovery of the interface properties by self-healing are coherently quantified in a clear kinetic process. On the fiber-bridging level, the experimentally characterized carbonation vs. depth relationship is added to the model. The modeling results can well capture the single-fiber pullout behavior and the fiber-bridging behavior of the self-healed SHCC specimens.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hilloulin, B., Hilloulin, D., Grondin, F., et al.: Mechanical regains due to self-healing in cementitious materials: experimental measurements and micro-mechanical model. Cem. Concr. Res. 80, 21–32 (2016)CrossRef Hilloulin, B., Hilloulin, D., Grondin, F., et al.: Mechanical regains due to self-healing in cementitious materials: experimental measurements and micro-mechanical model. Cem. Concr. Res. 80, 21–32 (2016)CrossRef
2.
go back to reference Zhang, Z., Zhang, Q., Li, V.: Multiple-scale investigations on self-healing induced mechanical property recovery of ECC. Cement Concr. Compos. 103, 293–302 (2019)CrossRef Zhang, Z., Zhang, Q., Li, V.: Multiple-scale investigations on self-healing induced mechanical property recovery of ECC. Cement Concr. Compos. 103, 293–302 (2019)CrossRef
3.
go back to reference Yang, Y., Lepech, M., Yang, E., et al.: Autogenous healing of engineered cementitious composites under wet–dry cycles. Cem. Concr. Res. 39(5), 382–390 (2009)CrossRef Yang, Y., Lepech, M., Yang, E., et al.: Autogenous healing of engineered cementitious composites under wet–dry cycles. Cem. Concr. Res. 39(5), 382–390 (2009)CrossRef
4.
go back to reference Qiu, J., Tan, H., Yang, E.: Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites. Cement Concr. Compos. 73, 203–212 (2016)CrossRef Qiu, J., Tan, H., Yang, E.: Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites. Cement Concr. Compos. 73, 203–212 (2016)CrossRef
5.
go back to reference Qiu, J., Ruan, S., Unluer, C., et al.: Autogenous healing of fiber-reinforced reactive magnesia-based tensile strain-hardening composites. Cem. Concr. Res. 115, 401–413 (2019)CrossRef Qiu, J., Ruan, S., Unluer, C., et al.: Autogenous healing of fiber-reinforced reactive magnesia-based tensile strain-hardening composites. Cem. Concr. Res. 115, 401–413 (2019)CrossRef
6.
go back to reference Fan, S., Li, M.: X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites. Smart Mater. Struct. 24(1), 015021 (2014)CrossRef Fan, S., Li, M.: X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites. Smart Mater. Struct. 24(1), 015021 (2014)CrossRef
7.
go back to reference Ruan, S., Qiu, J., Yang, E., et al.: Fiber-reinforced reactive magnesia-based tensile strain-hardening composites. Cement Concr. Compos. 89, 52–61 (2018)CrossRef Ruan, S., Qiu, J., Yang, E., et al.: Fiber-reinforced reactive magnesia-based tensile strain-hardening composites. Cement Concr. Compos. 89, 52–61 (2018)CrossRef
8.
go back to reference Wu, B., Qiu, J.: Incorporating hollow natural fiber (HNF) to enhance CO2 sequestration and mechanical properties of reactive magnesia cement (RMC)-based composites: feasibility study. J. CO2 Util. 57, 101874 (2022) Wu, B., Qiu, J.: Incorporating hollow natural fiber (HNF) to enhance CO2 sequestration and mechanical properties of reactive magnesia cement (RMC)-based composites: feasibility study. J. CO2 Util. 57, 101874 (2022)
9.
go back to reference Unluer, C.: Carbon dioxide sequestration in magnesium-based binders. In: Carbon Dioxide Sequestration in Cementitious Construction Materials, pp. 129–173. Woodhead Publishing (2018) Unluer, C.: Carbon dioxide sequestration in magnesium-based binders. In: Carbon Dioxide Sequestration in Cementitious Construction Materials, pp. 129–173. Woodhead Publishing (2018)
10.
go back to reference Lin, Z., Kanda, T., Li, V.: On interface property characterization and performance of fiber-reinforced cementitious composites. J. Concr. Sci. Eng. 1, 173–184 (1999) Lin, Z., Kanda, T., Li, V.: On interface property characterization and performance of fiber-reinforced cementitious composites. J. Concr. Sci. Eng. 1, 173–184 (1999)
11.
go back to reference Yang, E., Wang, S., Yang, Y., et al.: Fiber-bridging constitutive law of engineered cementitious composites. J. Adv. Concr. Technol. 6(1), 181–193 (2008)CrossRef Yang, E., Wang, S., Yang, Y., et al.: Fiber-bridging constitutive law of engineered cementitious composites. J. Adv. Concr. Technol. 6(1), 181–193 (2008)CrossRef
12.
go back to reference Wu, C.: Micromechanical tailoring of PVA-ECC for structural application. Thesis (Ph.D.), University of Michigan (2001) Wu, C.: Micromechanical tailoring of PVA-ECC for structural application. Thesis (Ph.D.), University of Michigan (2001)
Metadata
Title
A Depth-Dependent Fiber-Bridging Model to Predict the Tensile Properties Recovery Induced by the Self-healing of Strain-Hardening Cementitious Composites
Authors
Yangqing Liu
Bo Wu
Jishen Qiu
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-15805-6_12