Skip to main content
Top
Published in:

08-03-2024

A design and modeling perspective on photostimulation of the subretinal prosthesis with graphene-based photodiodes

Authors: Sharique Ali Asghar, Manjunatha Mahadevappa

Published in: Journal of Computational Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The two leading causes of blindness in the developed world are age-related macular degeneration and retinitis pigmentosa. The photostimulation of remaining retinal neurons using a photodiode in a proposed subretinal prosthesis is one of the solutions that hopes to restore vision. In this paper, we envision a better result through device simulation and modeling of a graphene-based photodiode that yields high-performance, wire-free, and light-induced retina implants. This study shows how the characteristics of graphene-based photodiodes have an improved result in terms of low threshold requirements for the activation of neurons. Graphene-based photodiode responsiveness is significantly improved in the visible and near-infrared ranges. Using a graphene photoconductive layer in a silicon photodiode can significantly decrease contact resistance, reduce dark current up to 20-fold, and lower the induced thermal effect and spontaneous emission by orders of magnitude of 103 and 106, respectively, compared to its Si counterparts. This advancement highlights graphene’s potential for optimizing metal–semiconductor interfaces, offering improved precision and sensitivity for high-resolution retinal prosthesis applications requiring enhanced signal-to-noise ratio and finer control. We offered a range of sizes for graphene-based photodiode arrays, including [5 × 5], [6 × 6], [6 × 7], and [7 × 6], to ensure the subretinal prostheses meet thermal safety standards. Physics-based modeling and simulation of graphene-based devices help us understand charge transfer mechanisms, improve operating bias, and achieve proper band gap modulation, which ushers in the development of graphene-like 2D materials for photostimulating neurons in projected retinal prostheses.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yue, L., Weiland, J.D., Roska, B., Humayun, M.S.: Retinal stimulation strategies to restore vision: fundamentals and systems. Prog. Retin. Eye Res. 53, 21–47 (2016)CrossRef Yue, L., Weiland, J.D., Roska, B., Humayun, M.S.: Retinal stimulation strategies to restore vision: fundamentals and systems. Prog. Retin. Eye Res. 53, 21–47 (2016)CrossRef
4.
go back to reference Burton, M.J., Ramke, J., Marques, A.P., Bourne, R.R.A., Congdon, N., Jones, I., Ah Tong, B.A.M., Arunga, S., Bachani, D., Bascaran, C., Bastawrous, A., Blanchet, K., Braithwaite, T., Buchan, J.C., Cairns, J., Cama, A., Chagunda, M., Chuluunkhuu, C., Cooper, A., Crofts-Lawrence, J., Dean, W.H., Denniston, A.K., Ehrlich, J.R., Emerson, P.M., Evans, J.R., Frick, K.D., Friedman, D.S., Furtado, J.M., Gichangi, M.M., Gichuhi, S., Gilbert, S.S., Gurung, R., Habtamu, E., Holland, P., Jonas, J.B., Keane, P.A., Keay, L., Khanna, R.C., Khaw, P.T., Kuper, H., Kyari, F., Lansingh, V.C., Mactaggart, I., Mafwiri, M.M., Mathenge, W., McCormick, I., Morjaria, P., Mowatt, L., Muirhead, D., Murthy, G.V.S., Mwangi, N., Patel, D.B., Peto, T., Qureshi, B.M., Salomão, S.R., Sarah, V., Shilio, B.R., Solomon, A.W., Swenor, B.K., Taylor, H.R., Wang, N., Webson, A., West, S.K., Wong, T.Y., Wormald, R., Yasmin, S., Yusufu, M., Silva, J.C., Resnikoff, S., Ravilla, T., Gilbert, C.E., Foster, A., Faal, H.B.: The lancet global health commission on global eye health: vision beyond 2020. Lancet Glob. Heal. 9, e489–e551 (2021). https://doi.org/10.1016/S2214-109X(20)30488-5CrossRef Burton, M.J., Ramke, J., Marques, A.P., Bourne, R.R.A., Congdon, N., Jones, I., Ah Tong, B.A.M., Arunga, S., Bachani, D., Bascaran, C., Bastawrous, A., Blanchet, K., Braithwaite, T., Buchan, J.C., Cairns, J., Cama, A., Chagunda, M., Chuluunkhuu, C., Cooper, A., Crofts-Lawrence, J., Dean, W.H., Denniston, A.K., Ehrlich, J.R., Emerson, P.M., Evans, J.R., Frick, K.D., Friedman, D.S., Furtado, J.M., Gichangi, M.M., Gichuhi, S., Gilbert, S.S., Gurung, R., Habtamu, E., Holland, P., Jonas, J.B., Keane, P.A., Keay, L., Khanna, R.C., Khaw, P.T., Kuper, H., Kyari, F., Lansingh, V.C., Mactaggart, I., Mafwiri, M.M., Mathenge, W., McCormick, I., Morjaria, P., Mowatt, L., Muirhead, D., Murthy, G.V.S., Mwangi, N., Patel, D.B., Peto, T., Qureshi, B.M., Salomão, S.R., Sarah, V., Shilio, B.R., Solomon, A.W., Swenor, B.K., Taylor, H.R., Wang, N., Webson, A., West, S.K., Wong, T.Y., Wormald, R., Yasmin, S., Yusufu, M., Silva, J.C., Resnikoff, S., Ravilla, T., Gilbert, C.E., Foster, A., Faal, H.B.: The lancet global health commission on global eye health: vision beyond 2020. Lancet Glob. Heal. 9, e489–e551 (2021). https://​doi.​org/​10.​1016/​S2214-109X(20)30488-5CrossRef
7.
8.
go back to reference Maya-Vetencourt, J.F., Ghezzi, D., Antognazza, M.R., Colombo, E., Mete, M., Feyen, P., Desii, A., Buschiazzo, A., Di Paolo, M., Di Marco, S., Ticconi, F., Emionite, L., Shmal, D., Marini, C., Donelli, I., Freddi, G., MacCarone, R., Bisti, S., Sambuceti, G., Pertile, G., Lanzani, G., Benfenati, F.: A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 16, 681–689 (2017). https://doi.org/10.1038/nmat4874CrossRef Maya-Vetencourt, J.F., Ghezzi, D., Antognazza, M.R., Colombo, E., Mete, M., Feyen, P., Desii, A., Buschiazzo, A., Di Paolo, M., Di Marco, S., Ticconi, F., Emionite, L., Shmal, D., Marini, C., Donelli, I., Freddi, G., MacCarone, R., Bisti, S., Sambuceti, G., Pertile, G., Lanzani, G., Benfenati, F.: A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 16, 681–689 (2017). https://​doi.​org/​10.​1038/​nmat4874CrossRef
11.
go back to reference Huang, T.W., Kamins, T.I., Chen, Z.C., Wang, B.Y., Bhuckory, M., Galambos, L., Ho, E., Ling, T., Afshar, S., Shin, A., Zuckerman, V., Harris, J.S., Mathieson, K., Palanker, D.: Vertical-junction photodiodes for smaller pixels in retinal prostheses. J. Neural Eng. 18(3), 036015 (2021). https://doi.org/10.1088/1741-2552/abe6b8CrossRef Huang, T.W., Kamins, T.I., Chen, Z.C., Wang, B.Y., Bhuckory, M., Galambos, L., Ho, E., Ling, T., Afshar, S., Shin, A., Zuckerman, V., Harris, J.S., Mathieson, K., Palanker, D.: Vertical-junction photodiodes for smaller pixels in retinal prostheses. J. Neural Eng. 18(3), 036015 (2021). https://​doi.​org/​10.​1088/​1741-2552/​abe6b8CrossRef
12.
go back to reference Delori, F.C., Webb, R.H., Sliney, D.H.: Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. JOSA A 24(5), 1250–1265 (2007)CrossRef Delori, F.C., Webb, R.H., Sliney, D.H.: Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. JOSA A 24(5), 1250–1265 (2007)CrossRef
13.
go back to reference Huang, H., Su, S., Wu, N., Wan, H., Wan, S., Bi, H., Sun, L.: Graphene-based sensors for human health monitoring. Front. Chem. 7, 399 (2019)CrossRef Huang, H., Su, S., Wu, N., Wan, H., Wan, S., Bi, H., Sun, L.: Graphene-based sensors for human health monitoring. Front. Chem. 7, 399 (2019)CrossRef
15.
19.
go back to reference Riazimehr, S., Kataria, S., Gonzalez-Medina, J.M., Wagner, S., Shaygan, M., Suckow, S., Ruiz, F.G., Engström, O., Godoy, A., Lemme, M.C.: High Responsivity and Quantum Efficiency of Graphene/Silicon Photodiodes Achieved by Interdigitating Schottky and Gated Regions. ACS Photonics 6, 107–115 (2019). https://doi.org/10.1021/acsphotonics.8b00951CrossRef Riazimehr, S., Kataria, S., Gonzalez-Medina, J.M., Wagner, S., Shaygan, M., Suckow, S., Ruiz, F.G., Engström, O., Godoy, A., Lemme, M.C.: High Responsivity and Quantum Efficiency of Graphene/Silicon Photodiodes Achieved by Interdigitating Schottky and Gated Regions. ACS Photonics 6, 107–115 (2019). https://​doi.​org/​10.​1021/​acsphotonics.​8b00951CrossRef
22.
go back to reference Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008). https://doi.org/10.1063/1.2907977CrossRef Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008). https://​doi.​org/​10.​1063/​1.​2907977CrossRef
24.
go back to reference Sabri Alirezaei, I., Burte, E.P.: Modeling and simulation of a 3D-CMOS silicon photodetector for low-intensity light detection. In: Physics and Simulation of Optoelectronic Devices XXIV. p. 974208. SPIE (2016) Sabri Alirezaei, I., Burte, E.P.: Modeling and simulation of a 3D-CMOS silicon photodetector for low-intensity light detection. In: Physics and Simulation of Optoelectronic Devices XXIV. p. 974208. SPIE (2016)
28.
go back to reference Pimenta, S., Carmo, J.P., Correia, R.G., Minas, G., Castanheira, E.M.S.: Characterization of silicon photodiodes for diffuse reflectance signal extraction. Pimenta, S., Carmo, J.P., Correia, R.G., Minas, G., Castanheira, E.M.S.: Characterization of silicon photodiodes for diffuse reflectance signal extraction.
29.
go back to reference Lemaire, W., Benhouria, M., Koua, K., Tong, W., Martin-Hardy, G., Stamp, M., Ganesan, K., Gauthier, L.-P., Besrour, M., Ahnood, A., Garrett, D.J., Roy, S., Ibbotson, M., Prawer, S., Fontaine, R.: Retinal Ganglion Cell Stimulation with an Optically Powered Retinal Prosthesis. (2020) Lemaire, W., Benhouria, M., Koua, K., Tong, W., Martin-Hardy, G., Stamp, M., Ganesan, K., Gauthier, L.-P., Besrour, M., Ahnood, A., Garrett, D.J., Roy, S., Ibbotson, M., Prawer, S., Fontaine, R.: Retinal Ganglion Cell Stimulation with an Optically Powered Retinal Prosthesis. (2020)
30.
33.
go back to reference Choi, C., Choi, M.K., Liu, S., Kim, M.S., Park, O.K., Im, C., Kim, J., Qin, X., Lee, G.J., Cho, K.W., Kim, M., Joh, E., Lee, J., Son, D., Kwon, S.H., Jeon, N.L., Song, Y.M., Lu, N., Kim, D.H.: Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8(1), 1664 (2017). https://doi.org/10.1038/s41467-017-01824-6CrossRef Choi, C., Choi, M.K., Liu, S., Kim, M.S., Park, O.K., Im, C., Kim, J., Qin, X., Lee, G.J., Cho, K.W., Kim, M., Joh, E., Lee, J., Son, D., Kwon, S.H., Jeon, N.L., Song, Y.M., Lu, N., Kim, D.H.: Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8(1), 1664 (2017). https://​doi.​org/​10.​1038/​s41467-017-01824-6CrossRef
35.
go back to reference Stett, A., Barth, W., Weiss, S., Haemmerle, H., Zrenner, E.: Electrical multisite stimulation of the isolated chicken retina. Vis. Res. 40(13), 1785–1795 (2000)CrossRef Stett, A., Barth, W., Weiss, S., Haemmerle, H., Zrenner, E.: Electrical multisite stimulation of the isolated chicken retina. Vis. Res. 40(13), 1785–1795 (2000)CrossRef
36.
go back to reference Kusnyerik, A., Greppmaier, U., Wilke, R., Gekeler, F., Wilhelm, B., Sachs, H.G., Bartz-Schmidt, K.U., Klose, U., Stingl, K., Resch, M.D., Hekmat, A., Bruckmann, A., Karacs, K., Nemeth, J., Suveges, I., Zrenner, E.: Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through multimodal assessment of retinal structures. Investig. Ophthalmol. Vis. Sci. 53, 3748–3755 (2012). https://doi.org/10.1167/iovs.11-9409CrossRef Kusnyerik, A., Greppmaier, U., Wilke, R., Gekeler, F., Wilhelm, B., Sachs, H.G., Bartz-Schmidt, K.U., Klose, U., Stingl, K., Resch, M.D., Hekmat, A., Bruckmann, A., Karacs, K., Nemeth, J., Suveges, I., Zrenner, E.: Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through multimodal assessment of retinal structures. Investig. Ophthalmol. Vis. Sci. 53, 3748–3755 (2012). https://​doi.​org/​10.​1167/​iovs.​11-9409CrossRef
38.
go back to reference Hirsh, J., Curcio, C.A.: The spatial resolution capacity of human foveal retina. Vis. Res. 29(9), 1095–1101 (1989)CrossRef Hirsh, J., Curcio, C.A.: The spatial resolution capacity of human foveal retina. Vis. Res. 29(9), 1095–1101 (1989)CrossRef
39.
go back to reference Stingl, K., Bartz-Schmidt, K.U., Besch, D., Braun, A., Bruckmann, A., Gekeler, F., Greppmaier, U., Hipp, S., Hortdorfer, G., Kernstock, C., Koitschev, A., Kusnyerik, A., Sachs, H., Schatz, A., Stingl, K.T., Peters, T., Wilhelm, B., Zrenner, E.: Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Soc. B Biol. Sci. 280(1757), 20130077 (2013). https://doi.org/10.1098/rspb.2013.0077CrossRef Stingl, K., Bartz-Schmidt, K.U., Besch, D., Braun, A., Bruckmann, A., Gekeler, F., Greppmaier, U., Hipp, S., Hortdorfer, G., Kernstock, C., Koitschev, A., Kusnyerik, A., Sachs, H., Schatz, A., Stingl, K.T., Peters, T., Wilhelm, B., Zrenner, E.: Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Soc. B Biol. Sci. 280(1757), 20130077 (2013). https://​doi.​org/​10.​1098/​rspb.​2013.​0077CrossRef
Metadata
Title
A design and modeling perspective on photostimulation of the subretinal prosthesis with graphene-based photodiodes
Authors
Sharique Ali Asghar
Manjunatha Mahadevappa
Publication date
08-03-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02144-x