Skip to main content
Top

2017 | OriginalPaper | Chapter

A DG Least-Squares Finite Element Method for Nagumo’s Nerve Equation with Fast Reaction: A Numerical Study

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Nagumo equation is a simple nonlinear reaction-diffusion equation, which has important applications in neuroscience and biological electricity. If the equation is reaction-dominated, numerical oscillations may appear near the traveling wave front, which makes it challenging to find stable solutions. In the present study, a new method is developed on uniform meshes to solve the Nagumo equation. Numerical results are given to demonstrate the performance of the algorithm. Convergence rates with respect to spatial and temporal discretization are obtained experimentally. Some properties of the nerve model are confirmed numerically.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Allen, S.M., Cahn, J.W.: Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall. 20(3), 423–433 (1972)CrossRef Allen, S.M., Cahn, J.W.: Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall. 20(3), 423–433 (1972)CrossRef
2.
go back to reference Bensow, R.E., Larson, M.G.: Discontinuous/continuous least-squares finite element methods for elliptic problems. Math. Models Methods Appl. Sci. 15, 825–842 (2005)CrossRefMATHMathSciNet Bensow, R.E., Larson, M.G.: Discontinuous/continuous least-squares finite element methods for elliptic problems. Math. Models Methods Appl. Sci. 15, 825–842 (2005)CrossRefMATHMathSciNet
3.
go back to reference Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Applied Mathematical Sciences, vol. 166. Springer, New York (2009) Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Applied Mathematical Sciences, vol. 166. Springer, New York (2009)
4.
go back to reference Bochev, P.B., Lai, J., Olson, L.: A locally conservative, discontinuous least-squares finite element method for the Stokes equations. Int. J. Numer. Methods Fluids 68, 782–804 (2012)CrossRefMATHMathSciNet Bochev, P.B., Lai, J., Olson, L.: A locally conservative, discontinuous least-squares finite element method for the Stokes equations. Int. J. Numer. Methods Fluids 68, 782–804 (2012)CrossRefMATHMathSciNet
5.
go back to reference Bochev, P.B., Lai, J., Olson, L.: A non-conforming least-squares finite element method for incompressible fluid flow problems. Int. J. Numer. Methods Fluids 72, 375–402 (2013)CrossRefMathSciNet Bochev, P.B., Lai, J., Olson, L.: A non-conforming least-squares finite element method for incompressible fluid flow problems. Int. J. Numer. Methods Fluids 72, 375–402 (2013)CrossRefMathSciNet
6.
go back to reference Britton, N.F.: Reaction-Diffusion Equations and Their Applications to Biology. Academic, London (1986)MATH Britton, N.F.: Reaction-Diffusion Equations and Their Applications to Biology. Academic, London (1986)MATH
7.
go back to reference Cao, Y., Gunzburger, M.D.: Least-squares finite element approximations to solutions of interface problems. SIAM J. Numer. Anal. 35, 393–405 (1998)CrossRefMATHMathSciNet Cao, Y., Gunzburger, M.D.: Least-squares finite element approximations to solutions of interface problems. SIAM J. Numer. Anal. 35, 393–405 (1998)CrossRefMATHMathSciNet
8.
go back to reference Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods. Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, New York (2000) Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods. Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, New York (2000)
9.
go back to reference Coudière, Y., Pierre, C.: Stability and convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology. Nonlinear Anal. Real World Appl. 7(4), 916–935 (2006)CrossRefMATHMathSciNet Coudière, Y., Pierre, C.: Stability and convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology. Nonlinear Anal. Real World Appl. 7(4), 916–935 (2006)CrossRefMATHMathSciNet
10.
go back to reference Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications, vol. 69. Springer, Heidelberg (2012) Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications, vol. 69. Springer, Heidelberg (2012)
11.
go back to reference FitzHugh, R.A.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRef FitzHugh, R.A.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRef
12.
go back to reference Griffiths, G.W., Schiesser, W.E.: Traveling Wave Analysis of Partial Differential Equations. Numerical and analytical Methods with MATLABⓇ and Maple TM . Elsevier/Academic, Amsterdam (2012) Griffiths, G.W., Schiesser, W.E.: Traveling Wave Analysis of Partial Differential Equations. Numerical and analytical Methods with MATLAB and Maple TM . Elsevier/Academic, Amsterdam (2012)
13.
go back to reference Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerves. J. Physiol. 117, 500–544 (1952)CrossRef Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerves. J. Physiol. 117, 500–544 (1952)CrossRef
14.
go back to reference Kawahara, T., Tanaka, M.: Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation. Phys. Lett. A 97(8), 311–314 (1983)CrossRefMathSciNet Kawahara, T., Tanaka, M.: Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation. Phys. Lett. A 97(8), 311–314 (1983)CrossRefMathSciNet
15.
go back to reference Lai, J., Bochev, P.B., Olson, L., Peterson, K., Ridzal, D., Siefert, C.: A discontinuous velocity least squares finite element method for the stokes equations with improved mass conservation. In: CSRI Summer Proceedings 2010, Sandia National Laboratory (2010) Lai, J., Bochev, P.B., Olson, L., Peterson, K., Ridzal, D., Siefert, C.: A discontinuous velocity least squares finite element method for the stokes equations with improved mass conservation. In: CSRI Summer Proceedings 2010, Sandia National Laboratory (2010)
16.
go back to reference Li, H., Guo, Y.: New exact solutions to the Fitzhugh-Nagumo equation. Appl. Math. Comput. 180(2), 524–528 (2006)MATHMathSciNet Li, H., Guo, Y.: New exact solutions to the Fitzhugh-Nagumo equation. Appl. Math. Comput. 180(2), 524–528 (2006)MATHMathSciNet
17.
go back to reference Lin, R.: Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions. SIAM J. Numer. Anal. 47(1), 89–108 (2008/09) Lin, R.: Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions. SIAM J. Numer. Anal. 47(1), 89–108 (2008/09)
18.
go back to reference Lin, R.: Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities. Numer. Math. 112(2), 295–318 (2009)CrossRefMATHMathSciNet Lin, R.: Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities. Numer. Math. 112(2), 295–318 (2009)CrossRefMATHMathSciNet
19.
go back to reference Lin, R., Zhu, H.: A discontinuous Galerkin least-squares finite element method for solving Fishers equation. Discrete Contin. Dyn. Syst. Ser. A Suppl. 489–497 (2013) Lin, R., Zhu, H.: A discontinuous Galerkin least-squares finite element method for solving Fishers equation. Discrete Contin. Dyn. Syst. Ser. A Suppl. 489–497 (2013)
20.
go back to reference Mitchell, A.R., Griffiths, D.F., Meiring, A.: Finite element Galerkin methods for convection-diffusion and reaction-diffusion. Analytical and numerical approaches to asymptotic problems in analysis. In: Proceedings of the Conference, University of Nijmegen, Nijmegen, pp. 157–177 (1980) Mitchell, A.R., Griffiths, D.F., Meiring, A.: Finite element Galerkin methods for convection-diffusion and reaction-diffusion. Analytical and numerical approaches to asymptotic problems in analysis. In: Proceedings of the Conference, University of Nijmegen, Nijmegen, pp. 157–177 (1980)
21.
go back to reference Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IREE 50, 2061–2070 (1962)CrossRef Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IREE 50, 2061–2070 (1962)CrossRef
22.
go back to reference Nucci, M.C., Clarkson, P.A.: The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation. Phys. Lett. A 164, 49–56 (1992) Nucci, M.C., Clarkson, P.A.: The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation. Phys. Lett. A 164, 49–56 (1992)
23.
go back to reference Olmos, D., Shizgal, B.D.: Pseudospectral method of solution of the Fitzhugh-Nagumo equation. Math. Comput. Simul. 79(7), 2258–2278 (2009)CrossRefMATHMathSciNet Olmos, D., Shizgal, B.D.: Pseudospectral method of solution of the Fitzhugh-Nagumo equation. Math. Comput. Simul. 79(7), 2258–2278 (2009)CrossRefMATHMathSciNet
24.
go back to reference Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapman & Hall/CRC, Boca Raton, FL (2004)MATH Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapman & Hall/CRC, Boca Raton, FL (2004)MATH
25.
go back to reference Ruiz-Ramírez, J., Macías-Díaz, J.E.: A finite-difference scheme to approximate non-negative and bounded solutions of a FitzHugh-Nagumo equation. Int. J. Comput. Math. 88(15), 3186–3201 (2011)CrossRefMATHMathSciNet Ruiz-Ramírez, J., Macías-Díaz, J.E.: A finite-difference scheme to approximate non-negative and bounded solutions of a FitzHugh-Nagumo equation. Int. J. Comput. Math. 88(15), 3186–3201 (2011)CrossRefMATHMathSciNet
26.
go back to reference Sanfelici, S.: Convergence of the Galerkin approximation of a degenerate evolution problem in electrocardiology. Numer. Methods Partial Differ. Equ. 18(2), 218–240 (2002)CrossRefMATHMathSciNet Sanfelici, S.: Convergence of the Galerkin approximation of a degenerate evolution problem in electrocardiology. Numer. Methods Partial Differ. Equ. 18(2), 218–240 (2002)CrossRefMATHMathSciNet
Metadata
Title
A DG Least-Squares Finite Element Method for Nagumo’s Nerve Equation with Fast Reaction: A Numerical Study
Author
Runchang Lin
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-67202-1_12

Premium Partner