Skip to main content
Top

2024 | OriginalPaper | Chapter

6. A “Digital+CIM” Processor Supporting Large-Scale NN Models

Author : Jinshan Yue

Published in: High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on the research work in Chap. 5, this chapter further analyzes the optimization space of “Digital+CIM” NN processors at the system level, and points out the efficiency and accuracy challenges of system-level CIM chips when running large-scale NN applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yue J, Liu Y, Feng X, He Y, Wang J, Yuan Z, Zhan M, Liu J, Su J-W, Chung Y-L et al (2023) An energy-efficient computing-in-memory NN processor with set-associate blockwise sparsity and ping-pong weight update. IEEE J Sol-State Circ Yue J, Liu Y, Feng X, He Y, Wang J, Yuan Z, Zhan M, Liu J, Su J-W, Chung Y-L et al (2023) An energy-efficient computing-in-memory NN processor with set-associate blockwise sparsity and ping-pong weight update. IEEE J Sol-State Circ
2.
go back to reference Si X, Chen J-J, Tu Y-N, Huang W-H, Wang J-H, Chiu Y-C, Wei W-C, Wu S-Y, Sun X, Liu R et al (2019) 24.5 A twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine learning. In: 2019 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 396–398 Si X, Chen J-J, Tu Y-N, Huang W-H, Wang J-H, Chiu Y-C, Wei W-C, Wu S-Y, Sun X, Liu R et al (2019) 24.5 A twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine learning. In: 2019 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 396–398
3.
go back to reference Yang J, Kong Y, Wang Z, Liu Y, Wang B, Yin S, Shi L (2019) 24.4 sandwich-RAM: an energy-efficient in-memory BWN architecture with pulse-width modulation. In: 2019 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 394–396 Yang J, Kong Y, Wang Z, Liu Y, Wang B, Yin S, Shi L (2019) 24.4 sandwich-RAM: an energy-efficient in-memory BWN architecture with pulse-width modulation. In: 2019 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 394–396
4.
go back to reference Su J-W, Si X, Chou Y-C, Chang T-W, Huang W-H, Tu Y-N, Liu R, Lu P-J, Liu T-W, Wang J-H et al (2020) 15.2 A 28 nm 64 kB inference-training two-way transpose multibit 6T SRAM compute-in-memory macro for AI edge chips. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 240–242 Su J-W, Si X, Chou Y-C, Chang T-W, Huang W-H, Tu Y-N, Liu R, Lu P-J, Liu T-W, Wang J-H et al (2020) 15.2 A 28 nm 64 kB inference-training two-way transpose multibit 6T SRAM compute-in-memory macro for AI edge chips. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 240–242
5.
go back to reference Si X, Tu Y-N, Huanq W-H, Su J-W, Lu P-J, Wang J-H, Liu T-W, Wu S-Y, Liu R, Chou Y-C et al (2020) 15.5 A 28 nm 64 kB 6T SRAM computing-in-memory macro with 8 b MAC operation for AI edge chips. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 246–248 Si X, Tu Y-N, Huanq W-H, Su J-W, Lu P-J, Wang J-H, Liu T-W, Wu S-Y, Liu R, Chou Y-C et al (2020) 15.5 A 28 nm 64 kB 6T SRAM computing-in-memory macro with 8 b MAC operation for AI edge chips. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 246–248
6.
go back to reference Yue J, Yuan Z, Feng X, He Y, Zhang Z, Si X, Liu R, Chang M-F, Li X, Yang H et al (2020) 14.3 A 65 nm computing-in-memory-based CNN processor with 2.9-to-35.8 TOPS/W system energy efficiency using dynamic-sparsity performance-scaling architecture and energy-efficient inter/intra-macro data reuse. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 234–236 Yue J, Yuan Z, Feng X, He Y, Zhang Z, Si X, Liu R, Chang M-F, Li X, Yang H et al (2020) 14.3 A 65 nm computing-in-memory-based CNN processor with 2.9-to-35.8 TOPS/W system energy efficiency using dynamic-sparsity performance-scaling architecture and energy-efficient inter/intra-macro data reuse. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 234–236
7.
go back to reference Yue J, Feng X, He Y, Huang Y, Wang Y, Yuan Z, Zhan M, Liu J, Su J-W, Chung Y-L et al (2021) 15.2 A 2.75-to-75.9 tops/w computing-in-memory NN processor supporting set-associate block-wise zero skipping and ping-pong cim with simultaneous computation and weight updating. In: 2021 IEEE international solid-state circuits conference (ISSCC), vol 64. IEEE, pp 238–240 Yue J, Feng X, He Y, Huang Y, Wang Y, Yuan Z, Zhan M, Liu J, Su J-W, Chung Y-L et al (2021) 15.2 A 2.75-to-75.9 tops/w computing-in-memory NN processor supporting set-associate block-wise zero skipping and ping-pong cim with simultaneous computation and weight updating. In: 2021 IEEE international solid-state circuits conference (ISSCC), vol 64. IEEE, pp 238–240
8.
go back to reference Yuan Z, Yue J, Yang H, Wang Z, Li J, Yang Y, Guo Q, Li X, Chang M-F, Yang H et al (2018) STICKER: a 0.41–62.1 TOPS/W 8 bit neural network processor with multi-sparsity compatible convolution arrays and online tuning acceleration for fully connected layers. In: 2018 IEEE symposium on VLSI circuits. IEEE, pp 33–34 Yuan Z, Yue J, Yang H, Wang Z, Li J, Yang Y, Guo Q, Li X, Chang M-F, Yang H et al (2018) STICKER: a 0.41–62.1 TOPS/W 8 bit neural network processor with multi-sparsity compatible convolution arrays and online tuning acceleration for fully connected layers. In: 2018 IEEE symposium on VLSI circuits. IEEE, pp 33–34
9.
go back to reference Yuan Z, Liu Y, Yue J, Yang Y, Wang J, Feng X, Zhao J, Li X, Yang H (2019) STICKER: an energy-efficient multi-sparsity compatible accelerator for convolutional neural networks in 65-nm CMOS. IEEE J Sol-State Circ 55(2):465–477CrossRef Yuan Z, Liu Y, Yue J, Yang Y, Wang J, Feng X, Zhao J, Li X, Yang H (2019) STICKER: an energy-efficient multi-sparsity compatible accelerator for convolutional neural networks in 65-nm CMOS. IEEE J Sol-State Circ 55(2):465–477CrossRef
10.
go back to reference Yuan Z, Yang Y, Yue J, Liu R, Feng X, Lin Z, Wu X, Li X, Yang H, Liu Y (2020) 14.2 A 65 nm 24.7 \(\upmu \)J/frame 12.3 mW activation-similarity-aware convolutional neural network video processor using hybrid precision, inter-frame data reuse and mixed-bit-width difference-frame data codec. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 232–234 Yuan Z, Yang Y, Yue J, Liu R, Feng X, Lin Z, Wu X, Li X, Yang H, Liu Y (2020) 14.2 A 65 nm 24.7 \(\upmu \)J/frame 12.3 mW activation-similarity-aware convolutional neural network video processor using hybrid precision, inter-frame data reuse and mixed-bit-width difference-frame data codec. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 232–234
11.
go back to reference Lee J, Kim C, Kang S, Shin D, Kim S, Yoo H-J (2018) UNPU: a 50.6 TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 218–220 Lee J, Kim C, Kang S, Shin D, Kim S, Yoo H-J (2018) UNPU: a 50.6 TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 218–220
Metadata
Title
A “Digital+CIM” Processor Supporting Large-Scale NN Models
Author
Jinshan Yue
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-3477-1_6