Skip to main content
Top

2024 | OriginalPaper | Chapter

A Dynamic Green’s Function for the Homogeneous Viscoelastic and Isotropic Half-Space

Authors : Tsviatko V. Rangelov, Petia S. Dineva, George D. Manolis

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A dynamic 3D Green’s function for the homogeneous, isotropic and viscoelastic (of the Zener type) half-space is derived in a closed form. The results obtained here can be used as either stand-alone solutions for simple problems or in conjunction with a boundary integral equation formulations to account for complex boundary conditions. In the later case, mesh-reducing boundary element formulations can be constructed as an alternative method for numerical implementation purposes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dineva, P., Manolis, G., Wuttke, F.: Fundamental solutions in 3d elastodynamics for the bem: A review. Eng. Anal.Bound. Elem. 105, 47–69 (2019) Dineva, P., Manolis, G., Wuttke, F.: Fundamental solutions in 3d elastodynamics for the bem: A review. Eng. Anal.Bound. Elem. 105, 47–69 (2019)
2.
go back to reference Dominguez, J.: Boundary Elements in Dynamics. Computational Mechanics Publications, Southampton (1993) Dominguez, J.: Boundary Elements in Dynamics. Computational Mechanics Publications, Southampton (1993)
3.
go back to reference Eringen, A.C., Suhubi, E.S.: Elasto–dynamics. vol. 2: Linear Theory. Academic Press, New York (1975) Eringen, A.C., Suhubi, E.S.: Elasto–dynamics. vol. 2: Linear Theory. Academic Press, New York (1975)
4.
go back to reference Johmson, L.R.: Green‘s function for lamb‘s problem. Geophys. J. Int. 37(1), 99–131 (1974) Johmson, L.R.: Green‘s function for lamb‘s problem. Geophys. J. Int. 37(1), 99–131 (1974)
5.
go back to reference Kausel, E.: Fundamental Solutions in Elastodynamics: A Compendium. Cambridge University Press, Cambridge (2006) Kausel, E.: Fundamental Solutions in Elastodynamics: A Compendium. Cambridge University Press, Cambridge (2006)
6.
go back to reference Lamb, H.: On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. London A 203, 1–42 (1904) Lamb, H.: On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. London A 203, 1–42 (1904)
7.
go back to reference Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematicam Models. Imperial College Press, London, UK (2010) Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematicam Models. Imperial College Press, London, UK (2010)
8.
go back to reference Makrou, A.A., Manolis, G.D.: A fractional derivative zener model for the numerical simulation of base isolated structures. Bull. Earthquake Eng. 14(1), 283–295 (2016) Makrou, A.A., Manolis, G.D.: A fractional derivative zener model for the numerical simulation of base isolated structures. Bull. Earthquake Eng. 14(1), 283–295 (2016)
9.
go back to reference Manolis, G.D., Dineva, P.S., Rangelov, T.V., Wuttke, F.: Seismic Wave Propagation in Non–Homogeneous Elastic Media by Boundary Elements. Solid Mechanics and its Applications, v. 240, Springer Int. Publ., Cham, Switzerland (2017) Manolis, G.D., Dineva, P.S., Rangelov, T.V., Wuttke, F.: Seismic Wave Propagation in Non–Homogeneous Elastic Media by Boundary Elements. Solid Mechanics and its Applications, v. 240, Springer Int. Publ., Cham, Switzerland (2017)
10.
go back to reference Manolis, G.D., Shaw, R.: Green’s function for a vector wave equation in mildly heterogeneous continuum. Wave Motion 24, 59–83 (1996) Manolis, G.D., Shaw, R.: Green’s function for a vector wave equation in mildly heterogeneous continuum. Wave Motion 24, 59–83 (1996)
11.
go back to reference Midlin, R.D.: Waves and vibrations in isotropic, elastic plates. In: J.N. Goodier, N.J. Hoff (eds.) Structural Mechanics. Pergamon Press, New York (1960) Midlin, R.D.: Waves and vibrations in isotropic, elastic plates. In: J.N. Goodier, N.J. Hoff (eds.) Structural Mechanics. Pergamon Press, New York (1960)
12.
go back to reference Pak, R.Y.S.: Asymmetric wave propagation in an elastic half-space by a method of potentials. J. Appl. Mech. 54(1), 121–126 (1995) Pak, R.Y.S.: Asymmetric wave propagation in an elastic half-space by a method of potentials. J. Appl. Mech. 54(1), 121–126 (1995)
13.
go back to reference Rangelov, T.V., Dineva, P.S., Manolis, G.D.: Dynamic response of a cracked viscoelastic anisotropic plane using boundary elements and fractional derivatives. J. Theor. Appl. Mech. 48(2), 24–49 (2018) Rangelov, T.V., Dineva, P.S., Manolis, G.D.: Dynamic response of a cracked viscoelastic anisotropic plane using boundary elements and fractional derivatives. J. Theor. Appl. Mech. 48(2), 24–49 (2018)
14.
go back to reference Tadeu, A., Antonio, J., Godinho, L.: Green‘s function for two and a half dimensional elastodynamic problems in a half-space. Comput. Mech. 27, 484–491 (2001) Tadeu, A., Antonio, J., Godinho, L.: Green‘s function for two and a half dimensional elastodynamic problems in a half-space. Comput. Mech. 27, 484–491 (2001)
15.
go back to reference Vladimirov, V.: Equations of Mathematical Physics. Marcel Dekker, Inc., New York (1971) Vladimirov, V.: Equations of Mathematical Physics. Marcel Dekker, Inc., New York (1971)
16.
go back to reference Yuan, H., Pan, Z.: Discussion on the time-harmonic elastodynamic half-space green‘s function obtained by superposition. Math. Probl. Eng. ID 2717810, 1–7 (2016) Yuan, H., Pan, Z.: Discussion on the time-harmonic elastodynamic half-space green‘s function obtained by superposition. Math. Probl. Eng. ID 2717810, 1–7 (2016)
17.
go back to reference Zhang, C., Gross, D.: On Wave Propagation in Elastic Solids with Cracks. Comput. Mech. Publ., Southampton (1998) Zhang, C., Gross, D.: On Wave Propagation in Elastic Solids with Cracks. Comput. Mech. Publ., Southampton (1998)
Metadata
Title
A Dynamic Green’s Function for the Homogeneous Viscoelastic and Isotropic Half-Space
Authors
Tsviatko V. Rangelov
Petia S. Dineva
George D. Manolis
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_13

Premium Partner