Skip to main content
Top
Published in: Journal of Scientific Computing 2/2018

19-01-2018

A Fast Discontinuous Galerkin Method for a Bond-Based Linear Peridynamic Model Discretized on a Locally Refined Composite Mesh

Authors: Huan Liu, Aijie Cheng, Hong Wang

Published in: Journal of Scientific Computing | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We develop a family of fast discontinuous Galerkin (DG) finite element methods for a bond-based linear peridynamic (PD) model in one space dimension. More precisely, we develop a preconditioned fast piecewise-constant DG scheme on a geometrically graded locally refined composite mesh which is suited for the scenario in which the jump discontinuity of the displacement field occurs at the one of the nodes in the original uniform partition. We also develop a preconditioned fast piecewise-linear DG scheme on a uniform mesh that has a second-order convergence rate when the jump discontinuity occurs at one of the computational nodes or has a convergence rate of one-half order otherwise. Motivated by these results, we develop a preconditioned fast hybrid DG scheme that is discretized on a locally uniformly refined composite mesh to numerically simulate the PD model where the jump discontinuity of the displacement field occurs inside a computational cell. We use a piecewise-constant DG scheme on a uniform mesh and a piecewise-linear DG scheme on a locally uniformly refined mesh of mesh size \(O(h^2)\), which has an overall convergence rate of O(h). Because of their nonlocal nature, numerical methods for PD models generate dense stiffness matrices which have \(O(N^2)\) memory requirement and \(O(N^3)\) computational complexity, where N is the number of computational nodes. In this paper, we explore the structure of the stiffness matrices to develop three preconditioned fast Krylov subspace iterative solvers for the DG method. Consequently, the methods have significantly reduced computational complexity and memory requirement. Numerical results show the utility of the numerical methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. ELsevier, San Diego (2003)MATH Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. ELsevier, San Diego (2003)MATH
2.
go back to reference Bobaru, F., Yang, M., Alves, L., Silling, S., Askari, E., Xu, J.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77(6), 852–877 (2009)CrossRefMATH Bobaru, F., Yang, M., Alves, L., Silling, S., Askari, E., Xu, J.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77(6), 852–877 (2009)CrossRefMATH
5.
go back to reference Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200, 1237–1250 (2011)MathSciNetCrossRefMATH Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200, 1237–1250 (2011)MathSciNetCrossRefMATH
6.
go back to reference Davis, P.J.: Circulant Matrices. Wiley-Intersciences, New York (1979)MATH Davis, P.J.: Circulant Matrices. Wiley-Intersciences, New York (1979)MATH
7.
go back to reference Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)MathSciNetCrossRefMATH Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)MathSciNetCrossRefMATH
8.
go back to reference Deng, W.: Finite element bethod for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetCrossRef Deng, W.: Finite element bethod for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetCrossRef
11.
go back to reference Du, Q., Ju, L., Tian, L., Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comput. 82, 1889–1922 (2013)MathSciNetCrossRefMATH Du, Q., Ju, L., Tian, L., Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comput. 82, 1889–1922 (2013)MathSciNetCrossRefMATH
12.
go back to reference Du, Q., Tian, L., Zhao, X.: A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J. Numer. Anal. 51(2), 1211–1234 (2013)MathSciNetCrossRefMATH Du, Q., Tian, L., Zhao, X.: A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J. Numer. Anal. 51(2), 1211–1234 (2013)MathSciNetCrossRefMATH
13.
14.
go back to reference Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)CrossRef Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)CrossRef
15.
go back to reference Ghajari, M., Iannucci, L., Curtis, P.: A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput. Methods Appl. Mech. Eng. 276, 431–452 (2014)MathSciNetCrossRef Ghajari, M., Iannucci, L., Curtis, P.: A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput. Methods Appl. Mech. Eng. 276, 431–452 (2014)MathSciNetCrossRef
16.
go back to reference Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)CrossRef Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)CrossRef
17.
18.
go back to reference Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)MathSciNetCrossRefMATH Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)MathSciNetCrossRefMATH
19.
go back to reference Lai, X., Ren, B., Fan, H., Li, S., Wu, C.T., Regueiro, R.A., Liu, L.: Peridynamics simulations of geomaterial fragmentation by impulse loads. Int. J. Numer. Anal. Meth. Geomech. 39, 1304–1330 (2015)CrossRef Lai, X., Ren, B., Fan, H., Li, S., Wu, C.T., Regueiro, R.A., Liu, L.: Peridynamics simulations of geomaterial fragmentation by impulse loads. Int. J. Numer. Anal. Meth. Geomech. 39, 1304–1330 (2015)CrossRef
20.
go back to reference Li, C., Ding, H.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)MathSciNetCrossRef Li, C., Ding, H.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)MathSciNetCrossRef
21.
go back to reference Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRefMATH Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRefMATH
22.
go back to reference Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)MathSciNetCrossRefMATH Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)MathSciNetCrossRefMATH
23.
go back to reference Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH
24.
go back to reference Mitchell, J.A.: A nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia Report SAND 2011-3166, May 2011 Mitchell, J.A.: A nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia Report SAND 2011-3166, May 2011
25.
go back to reference Oterkus, E., Madenci, E., Weckner, O., Silling, S., Bogert, P.: Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Compos. Struct. 94, 839–850 (2012)CrossRef Oterkus, E., Madenci, E., Weckner, O., Silling, S., Bogert, P.: Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Compos. Struct. 94, 839–850 (2012)CrossRef
26.
go back to reference Seleson, P., Du, Q., Parks, M.L.: On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models. Comput. Methods Appl. Mech. Eng. 311, 698–722 (2016)MathSciNetCrossRef Seleson, P., Du, Q., Parks, M.L.: On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models. Comput. Methods Appl. Mech. Eng. 311, 698–722 (2016)MathSciNetCrossRef
27.
go back to reference Seleson, P., Littlewood, D.: Convergence studies in meshfree peridynamic simulations. Comput. Math. Appl. 71, 2432–2448 (2016)MathSciNetCrossRef Seleson, P., Littlewood, D.: Convergence studies in meshfree peridynamic simulations. Comput. Math. Appl. 71, 2432–2448 (2016)MathSciNetCrossRef
28.
go back to reference Seleson, P., Parks, M.L.: On the role of the infuence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)CrossRef Seleson, P., Parks, M.L.: On the role of the infuence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)CrossRef
29.
go back to reference Silling, S.: Reformulation of elasticity theory for discontinuous and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRefMATH Silling, S.: Reformulation of elasticity theory for discontinuous and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRefMATH
30.
go back to reference Silling, S., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRef Silling, S., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRef
31.
go back to reference Silling, S., Epton, M., Wecker, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetCrossRefMATH Silling, S., Epton, M., Wecker, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetCrossRefMATH
32.
go back to reference Silling, S., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)CrossRefMATH Silling, S., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)CrossRefMATH
33.
go back to reference Sun, S., Sundararaghavan, V.: A peridynamic implementation of crystal plasticity. Int. J. Solids Struct. 51, 3350–3360 (2014)CrossRef Sun, S., Sundararaghavan, V.: A peridynamic implementation of crystal plasticity. Int. J. Solids Struct. 51, 3350–3360 (2014)CrossRef
34.
go back to reference Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)MathSciNetCrossRefMATH Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)MathSciNetCrossRefMATH
35.
go back to reference Tian, H., Wang, H., Wang, W.: An efficient collocation method for a non-local diffusion model. Int. J. Numer. Anal. Model. 10, 815–825 (2013)MathSciNetMATH Tian, H., Wang, H., Wang, W.: An efficient collocation method for a non-local diffusion model. Int. J. Numer. Anal. Model. 10, 815–825 (2013)MathSciNetMATH
36.
go back to reference Wang, C., Wang, H.: A fast collocation method for a variable-coefficient nonlocal diffusion model. J. Comput. Phys. 330, 114–126 (2017)MathSciNetCrossRefMATH Wang, C., Wang, H.: A fast collocation method for a variable-coefficient nonlocal diffusion model. J. Comput. Phys. 330, 114–126 (2017)MathSciNetCrossRefMATH
37.
go back to reference Wang, H., Tian, H.: A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J. Comput. Phys. 231, 7730–7738 (2012)MathSciNetCrossRefMATH Wang, H., Tian, H.: A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J. Comput. Phys. 231, 7730–7738 (2012)MathSciNetCrossRefMATH
38.
go back to reference Wang, H., Tian, H.: A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model. Comput. Methods Appl. Mech. Eng. 273, 19–36 (2014)MathSciNetCrossRefMATH Wang, H., Tian, H.: A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model. Comput. Methods Appl. Mech. Eng. 273, 19–36 (2014)MathSciNetCrossRefMATH
39.
go back to reference Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRefMATH Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRefMATH
40.
go back to reference Xu, F., Gunzburger, M., Burkardt, J., Du, Q.: A multiscale implementation based on adaptive mesh refinement for the nonlocal peridynamics model in one dimension. Multiscale Model. Simul. 14(1), 398–429 (2016)MathSciNetCrossRefMATH Xu, F., Gunzburger, M., Burkardt, J., Du, Q.: A multiscale implementation based on adaptive mesh refinement for the nonlocal peridynamics model in one dimension. Multiscale Model. Simul. 14(1), 398–429 (2016)MathSciNetCrossRefMATH
41.
go back to reference Xu, F., Gunzburger, M., Burkardt, J.: A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Comput. Method Appl. Mech. Eng. 307, 117–143 (2016)MathSciNetCrossRef Xu, F., Gunzburger, M., Burkardt, J.: A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Comput. Method Appl. Mech. Eng. 307, 117–143 (2016)MathSciNetCrossRef
42.
go back to reference Zhang, X., Wang, H.: A fast method for a steady-state bond-based peridynamic model. Comput. Methods Appl. Mech. Eng. 311, 280–303 (2016)CrossRef Zhang, X., Wang, H.: A fast method for a steady-state bond-based peridynamic model. Comput. Methods Appl. Mech. Eng. 311, 280–303 (2016)CrossRef
43.
go back to reference Zhao, M., Cheng, A., Wang, H.: A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete Contin. Dyn. B 22(9), 3529–3545 (2017)MathSciNetCrossRefMATH Zhao, M., Cheng, A., Wang, H.: A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete Contin. Dyn. B 22(9), 3529–3545 (2017)MathSciNetCrossRefMATH
44.
go back to reference Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary condition. SIAM J. Numer. Anal. 48, 1759–1780 (2010)MathSciNetCrossRefMATH Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary condition. SIAM J. Numer. Anal. 48, 1759–1780 (2010)MathSciNetCrossRefMATH
Metadata
Title
A Fast Discontinuous Galerkin Method for a Bond-Based Linear Peridynamic Model Discretized on a Locally Refined Composite Mesh
Authors
Huan Liu
Aijie Cheng
Hong Wang
Publication date
19-01-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0645-6

Other articles of this Issue 2/2018

Journal of Scientific Computing 2/2018 Go to the issue

Premium Partner