Skip to main content
Top
Published in: Numerical Algorithms 4/2020

04-02-2020 | Original Paper

A fast method for variable-order space-fractional diffusion equations

Authors: Jinhong Jia, Xiangcheng Zheng, Hongfei Fu, Pingfei Dai, Hong Wang

Published in: Numerical Algorithms | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We develop a fast divide-and-conquer indirect collocation method for the homogeneous Dirichlet boundary value problem of variable-order space-fractional diffusion equations. Due to the impact of the space-dependent variable order, the resulting stiffness matrix of the numerical scheme does not have a Toeplitz structure. In this paper, we derive a fast approximation of the coefficient matrix by the means of a finite sum of Toeplitz matrices multiplied by diagonal matrices. We show that the approximation is asymptotically consistent with the original problem, which requires \(O(N\log ^{2} N)\) memory and \(O(N\log ^{3} N)\) computational complexity with N being the numbers of unknowns. Numerical experiments are presented to demonstrate the effectiveness and the efficiency of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Lin. Algebra Appl. 24, e2093 (2017)MathSciNetCrossRef Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Lin. Algebra Appl. 24, e2093 (2017)MathSciNetCrossRef
3.
go back to reference Bear, J.: Dynamics of fluids in porous media. Elsevier, New York (1972)MATH Bear, J.: Dynamics of fluids in porous media. Elsevier, New York (1972)MATH
4.
go back to reference Benson, D., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motions, and the MADE tracer tests. Transport in Porous Media 42, 211–240 (2001)MathSciNetCrossRef Benson, D., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motions, and the MADE tracer tests. Transport in Porous Media 42, 211–240 (2001)MathSciNetCrossRef
5.
go back to reference Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95, 92–97 (2019)MathSciNetCrossRef Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95, 92–97 (2019)MathSciNetCrossRef
6.
go back to reference Bertaccini, D., Durastante, F.: Limited memory block preconditioners for fast solution of fractional partial differential equations. J. Sci. Comput. 77, 950–970 (2018)MathSciNetCrossRef Bertaccini, D., Durastante, F.: Limited memory block preconditioners for fast solution of fractional partial differential equations. J. Sci. Comput. 77, 950–970 (2018)MathSciNetCrossRef
7.
go back to reference Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)MathSciNetCrossRef Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)MathSciNetCrossRef
8.
go back to reference Del-Castillo-Negrete, D., Carreras, B. A., Lynch, V. E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)CrossRef Del-Castillo-Negrete, D., Carreras, B. A., Lynch, V. E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)CrossRef
9.
go back to reference Del-Castillo-Negrete, D.: Front propagation in reaction-diffusion systems with anomalous diffusion. Boletí,n de la Sociedad Matemática Mexicana 20, 87–105 (2014)MathSciNetCrossRef Del-Castillo-Negrete, D.: Front propagation in reaction-diffusion systems with anomalous diffusion. Boletí,n de la Sociedad Matemática Mexicana 20, 87–105 (2014)MathSciNetCrossRef
10.
go back to reference Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetCrossRef Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetCrossRef
11.
go back to reference Embrechts, P., Maejima, M.: Selfsimilar processes, Princeton series in applied mathematics. University Press, Princeton (2002)MATH Embrechts, P., Maejima, M.: Selfsimilar processes, Princeton series in applied mathematics. University Press, Princeton (2002)MATH
12.
go back to reference Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRef Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRef
13.
go back to reference Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. PDEs 22, 558–576 (2005)MathSciNetCrossRef Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. PDEs 22, 558–576 (2005)MathSciNetCrossRef
14.
go back to reference Fu, H., Ng, M.K., Wang, H.: A divided-and-conquer fast finite difference method for space-time fractional partial differential equation. Comput. Math. Appl. 73(6), 1233–1242 (2017)MathSciNetCrossRef Fu, H., Ng, M.K., Wang, H.: A divided-and-conquer fast finite difference method for space-time fractional partial differential equation. Comput. Math. Appl. 73(6), 1233–1242 (2017)MathSciNetCrossRef
15.
go back to reference Jin, X., Lin, F., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18, 469–488 (2015)MathSciNetCrossRef Jin, X., Lin, F., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18, 469–488 (2015)MathSciNetCrossRef
16.
go back to reference Ke, R., Ng, M. K., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303(C), 203–211 (2015)MathSciNetCrossRef Ke, R., Ng, M. K., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303(C), 203–211 (2015)MathSciNetCrossRef
17.
go back to reference Kian, Y., Soccorsi, E., Yamamoto, M.: On time-fractional diffusion equations with space-dependent variable order. Annales Henri Poincare 19, 3855–3881 (2018)MathSciNetCrossRef Kian, Y., Soccorsi, E., Yamamoto, M.: On time-fractional diffusion equations with space-dependent variable order. Annales Henri Poincare 19, 3855–3881 (2018)MathSciNetCrossRef
18.
go back to reference Li, C., Zhao, Z., Chen, Y. Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)MathSciNetCrossRef Li, C., Zhao, Z., Chen, Y. Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)MathSciNetCrossRef
20.
go back to reference Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef
21.
go back to reference Lin, X., Ng, M. K., Sun, H.: Efficient preconditioner of one-sided space fractional diffusion equation[J]. BIT Numer Math. (2018) Lin, X., Ng, M. K., Sun, H.: Efficient preconditioner of one-sided space fractional diffusion equation[J]. BIT Numer Math. (2018)
22.
go back to reference Lin, X., Ng, M.K., Sun, H.: A splitting preconditioner for toeplitz-like linear systems arising from fractional diffusion equations. SIAMX 38, 1580–1614 (2017)MathSciNetCrossRef Lin, X., Ng, M.K., Sun, H.: A splitting preconditioner for toeplitz-like linear systems arising from fractional diffusion equations. SIAMX 38, 1580–1614 (2017)MathSciNetCrossRef
23.
go back to reference Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRef Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRef
24.
go back to reference Meerschaert, M., Sikorskii, A.: Stochastic models for fractional calculus. De Gruyter Studies in Mathematics (2011) Meerschaert, M., Sikorskii, A.: Stochastic models for fractional calculus. De Gruyter Studies in Mathematics (2011)
25.
go back to reference Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, R161–R208 (2004)MathSciNetCrossRef Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, R161–R208 (2004)MathSciNetCrossRef
26.
go back to reference Pan, J., Ng, M. K., Wang, H.: Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations. Numer. Algorithms 74, 153–173 (2017)MathSciNetCrossRef Pan, J., Ng, M. K., Wang, H.: Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations. Numer. Algorithms 74, 153–173 (2017)MathSciNetCrossRef
27.
go back to reference Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH
28.
go back to reference Roop, J. P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(\mathbb {R}^{2}\). J. Comput. Appl. Math. 193, 243–268 (2006)MathSciNetCrossRef Roop, J. P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(\mathbb {R}^{2}\). J. Comput. Appl. Math. 193, 243–268 (2006)MathSciNetCrossRef
29.
go back to reference Schumer, R., Benson, D.A, Meerschaert, M.M., Wheatcraft, S. W.: Eulerian derivation of the fractional advection-dispersion equation. J. Contaminant Hydrology 48, 69–88 (2001)CrossRef Schumer, R., Benson, D.A, Meerschaert, M.M., Wheatcraft, S. W.: Eulerian derivation of the fractional advection-dispersion equation. J. Contaminant Hydrology 48, 69–88 (2001)CrossRef
30.
go back to reference Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetCrossRef Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetCrossRef
31.
go back to reference Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A: Stat. Mech. Appl. 388, 4586–4592 (2009)CrossRef Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A: Stat. Mech. Appl. 388, 4586–4592 (2009)CrossRef
32.
33.
go back to reference Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)MathSciNetCrossRef Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)MathSciNetCrossRef
34.
go back to reference Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^{2} {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRef Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^{2} {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRef
35.
go back to reference Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)MathSciNetCrossRef Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)MathSciNetCrossRef
36.
go back to reference Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM Sci. Comp. 37, A2710–A2732 (2015)MathSciNetCrossRef Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM Sci. Comp. 37, A2710–A2732 (2015)MathSciNetCrossRef
37.
go back to reference Zhao, Z., Jin, X., Lin, M.: Preconditioned iterative methods for space-time fractional advection-diffusion equations. J. Comput. Phys. 319, 266–279 (2016)MathSciNetCrossRef Zhao, Z., Jin, X., Lin, M.: Preconditioned iterative methods for space-time fractional advection-diffusion equations. J. Comput. Phys. 319, 266–279 (2016)MathSciNetCrossRef
38.
go back to reference Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM Numer. Anal. 58, 330–352 (2020)MathSciNetCrossRef Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM Numer. Anal. 58, 330–352 (2020)MathSciNetCrossRef
39.
go back to reference Zheng, X., Wang, H.: Wellposedness and regularity of a nonlinear variable-order fractional wave equation. Appl. Math. Lett. 95, 29–35 (2019)MathSciNetCrossRef Zheng, X., Wang, H.: Wellposedness and regularity of a nonlinear variable-order fractional wave equation. Appl. Math. Lett. 95, 29–35 (2019)MathSciNetCrossRef
40.
go back to reference Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef
Metadata
Title
A fast method for variable-order space-fractional diffusion equations
Authors
Jinhong Jia
Xiangcheng Zheng
Hongfei Fu
Pingfei Dai
Hong Wang
Publication date
04-02-2020
Publisher
Springer US
Published in
Numerical Algorithms / Issue 4/2020
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-020-00875-z

Other articles of this Issue 4/2020

Numerical Algorithms 4/2020 Go to the issue

Premium Partner