Skip to main content
Top
Published in: Fire Technology 6/2018

01-09-2018

A Finite Element Model for the Simulation of the UL-94 Burning Test

Authors: Julio Marti, Sergio R. Idelsohn, Eugenio Oñate

Published in: Fire Technology | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The tendency of the polymers to melt and drip when they are exposed to external heat source play a very important role in the ignition and the spread of fire. Numerical simulation is a promising methodology for predicting this behaviour. In this paper, a computational procedure that aims at analyzing the combustion, melting and flame spread of polymer is presented. The method models the polymer using a Lagrangian framework adopting the particle finite element method framework while the surrounding air is solved on a fixed Eulerian mesh. This approach allows to treat naturally the polymer shape deformations and to solve the thermo-mechanical problem in a staggered fashion. The problems are coupled using an embedded Dirichlet–Neumann scheme. A simple combustion model and a radiation modeling strategy are included in the air domain. With this strategy the burning of a polypropylene specimen under UL-94 vertical test conditions is simulated. Input parameters for the modelling (density, specific heat, conductivity and viscosity) and results for the validation of the numerical model has been obtained from different literature sources and by IMDEA burning a specimen of dimensions of \(148 \times 13 \times 3.2\,{\mathrm {mm}}^3\). Temperature measurements in the polymer have been recorder by means of three thermocouples exceeding the 1000 K. Simultaneously a digital camera was used to record the burning process. In addition, thermal decomposition of the material (Arrhenius coefficient \({\mathrm {A}}=7.14 \times 10^{16}\,{\mathrm {min}}^{-1}\) and activation energy \({\mathrm {E}}=240.67\,{\mathrm {kJ/mol}}\)) as and changes in viscosity (\(\mu \)) as a function of temperature were obtained. Finally, a good agreement between the experimental and the numerical can be seen in terms of shape of the polymer as well as in the temperature evolution inside the polymer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
This assumption becomes satisfactory for higher temperatures and regarding a narrow range of shear rates like those experienced in the UL-94 test [30].
 
2
Assuming constant values for the Schmidt (\(\mathrm {Sc=1}\)) and Prandtl (\(\mathrm {Pr=1}\)) numbers simplified composition and temperature dependent transport properties thus \(\rho {\mathrm {D}}= \kappa /{\mathrm {C}}\).
 
Literature
1.
go back to reference Stoliarov SI, Lyon RE (2008) Thermo-kinetic model of burning for pyrolyzing materials. Fire Saf Sci 9:1141-1152CrossRef Stoliarov SI, Lyon RE (2008) Thermo-kinetic model of burning for pyrolyzing materials. Fire Saf Sci 9:1141-1152CrossRef
2.
go back to reference Lautenberger C, Fernndez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf 44:819CrossRef Lautenberger C, Fernndez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf 44:819CrossRef
3.
go back to reference Lautenberger C (2014) Gpyro3d: A three dimensional generalized pyrolysis model. Fire Saf Sci 11:193–207CrossRef Lautenberger C (2014) Gpyro3d: A three dimensional generalized pyrolysis model. Fire Saf Sci 11:193–207CrossRef
5.
go back to reference McGrattan K, McDermott R, Weinschenk C, Forney G (2013) Fire dynamics simulator (version 6), technical reference guide McGrattan K, McDermott R, Weinschenk C, Forney G (2013) Fire dynamics simulator (version 6), technical reference guide
6.
go back to reference Stoliarov Stanislav I, Leventon Isaac T, Lyon Richard E (2013) Two dimensional model of burning for pyrolyzable solids. Fire Mater 38(3):391–408CrossRef Stoliarov Stanislav I, Leventon Isaac T, Lyon Richard E (2013) Two dimensional model of burning for pyrolyzable solids. Fire Mater 38(3):391–408CrossRef
7.
go back to reference Lautenberger C, Fernandez-Pello C (2009) A model for the oxidative pyrolysis of wood. Combust Flame 156(8):1503–1513CrossRef Lautenberger C, Fernandez-Pello C (2009) A model for the oxidative pyrolysis of wood. Combust Flame 156(8):1503–1513CrossRef
8.
go back to reference Lautenberger C, Rein G, Fernandez-Pello C (2006) The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J 41(3):204–214CrossRef Lautenberger C, Rein G, Fernandez-Pello C (2006) The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J 41(3):204–214CrossRef
9.
go back to reference Chaos M, Khan M, Krishnamoorthy N, de Ris J, Dorofeev S (2011) Evaluation of optimization schemes and determination of solid fuel properties for cfd fire models using bench-scale pyrolysis tests. Proc Combust Inst 33(2):2599–2606CrossRef Chaos M, Khan M, Krishnamoorthy N, de Ris J, Dorofeev S (2011) Evaluation of optimization schemes and determination of solid fuel properties for cfd fire models using bench-scale pyrolysis tests. Proc Combust Inst 33(2):2599–2606CrossRef
10.
go back to reference Ramroth WT, Krysl P, Asaro RJ (2006) Sensitivity and uncertainty analyses for FE thermal model of FRP panel exposed to fire. Compos A 37:1082-1091CrossRef Ramroth WT, Krysl P, Asaro RJ (2006) Sensitivity and uncertainty analyses for FE thermal model of FRP panel exposed to fire. Compos A 37:1082-1091CrossRef
11.
go back to reference Linteris GT (2011) Numerical simulations of polymer pyrolysis rate: effect of property variations. Fire Mater 35:463480CrossRef Linteris GT (2011) Numerical simulations of polymer pyrolysis rate: effect of property variations. Fire Mater 35:463480CrossRef
12.
go back to reference Stoliarov SI, Safronava N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257271CrossRef Stoliarov SI, Safronava N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257271CrossRef
13.
go back to reference Bal N, Rein G (2013) Relevant model complexity for non-charring polymer pyrolysis. Fire Saf J 61:36–44CrossRef Bal N, Rein G (2013) Relevant model complexity for non-charring polymer pyrolysis. Fire Saf J 61:36–44CrossRef
14.
go back to reference Blasi C, Crescitelli S, Russo G, Cinque G (1991) Numerical model of ignition processes of polymeric materials including gas-phase absorption of radiation. Combust Flame 83(3):333–344CrossRef Blasi C, Crescitelli S, Russo G, Cinque G (1991) Numerical model of ignition processes of polymeric materials including gas-phase absorption of radiation. Combust Flame 83(3):333–344CrossRef
15.
go back to reference Tsai T, Li M, Shih I, Jih R, Wong S (2001) Experimental and numerical study of autoignition and pilot ignition of pmma plates in a cone calorimeter. Combust Flame 124(3):466–480CrossRef Tsai T, Li M, Shih I, Jih R, Wong S (2001) Experimental and numerical study of autoignition and pilot ignition of pmma plates in a cone calorimeter. Combust Flame 124(3):466–480CrossRef
16.
go back to reference Wu K, Fan W, Chen C, Liou T, Pan I (2003) Downward flame spread over a thick pmma slab in an opposed flow environment: experiment and modeling. Combust Flame 132(4):697–707CrossRef Wu K, Fan W, Chen C, Liou T, Pan I (2003) Downward flame spread over a thick pmma slab in an opposed flow environment: experiment and modeling. Combust Flame 132(4):697–707CrossRef
17.
go back to reference Gotoda H, Manzello S, Saso Y, Kashiwagi T (2006) Effects of sample orientation on nonpiloted ignition of thin poly(methyl methacrylate) sheets by a laser: 2. Experimental results. Combust Flame 145(4):820–835CrossRef Gotoda H, Manzello S, Saso Y, Kashiwagi T (2006) Effects of sample orientation on nonpiloted ignition of thin poly(methyl methacrylate) sheets by a laser: 2. Experimental results. Combust Flame 145(4):820–835CrossRef
18.
go back to reference Kempel F, Schartel B, Marti J, Butler K, Rossi R, Idelsohn SR, Oñate E, Hofmann A (2015) Modelling the vertical ul 94 test: competition and collaboration between melt dripping, gasification and combustion. Fire Mater 39(6):570–584 FAM-14-012CrossRef Kempel F, Schartel B, Marti J, Butler K, Rossi R, Idelsohn SR, Oñate E, Hofmann A (2015) Modelling the vertical ul 94 test: competition and collaboration between melt dripping, gasification and combustion. Fire Mater 39(6):570–584 FAM-14-012CrossRef
19.
go back to reference Wang Y, Jow J, Su K, Zhang J (2012) Development of the unsteady upward fire model to simulate polymer burning under ul 94 vertical test conditions. Fire Saf J 54:1–13 Part of special issue: Large Outdoor FiresCrossRef Wang Y, Jow J, Su K, Zhang J (2012) Development of the unsteady upward fire model to simulate polymer burning under ul 94 vertical test conditions. Fire Saf J 54:1–13 Part of special issue: Large Outdoor FiresCrossRef
20.
go back to reference Matzen M, Marti J, Oñate E, Idelsohn S, Schartel B (2017) Advanced experiments and particle finite element modelling on dripping v–0 polypropylene, fire and materials 2017. In: 15th International conference, San Francisco, CA, USA Matzen M, Marti J, Oñate E, Idelsohn S, Schartel B (2017) Advanced experiments and particle finite element modelling on dripping v–0 polypropylene, fire and materials 2017. In: 15th International conference, San Francisco, CA, USA
21.
go back to reference Li J, Stoliarov SI (2013) Measurement of kinetics and thermodynamics of the thermal degradation for non- charring polymers. Combust Flame 160:1287–1297CrossRef Li J, Stoliarov SI (2013) Measurement of kinetics and thermodynamics of the thermal degradation for non- charring polymers. Combust Flame 160:1287–1297CrossRef
22.
go back to reference Stoliarov SI, Safronava N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257–271CrossRef Stoliarov SI, Safronava N, Lyon RE (2009) The effect of variation in polymer properties on the rate of burning. Fire Mater 33:257–271CrossRef
23.
go back to reference Marti J, Ryzhakov P, Idelsohn S, Oñate E (2010) Combined eulerian-pfem approach for analysis of polymers in fire situations. Int J Numer Methods Eng 92:782–801MathSciNetCrossRef Marti J, Ryzhakov P, Idelsohn S, Oñate E (2010) Combined eulerian-pfem approach for analysis of polymers in fire situations. Int J Numer Methods Eng 92:782–801MathSciNetCrossRef
24.
go back to reference Oñate E, Marti J, Ryzhakov P, Rossi R, Idelsohn S (2013) Analysis of the melting, burning and flame spread of polymers with the particle finite element method. Comput Assist Methods Eng Sci 20:165–184MathSciNet Oñate E, Marti J, Ryzhakov P, Rossi R, Idelsohn S (2013) Analysis of the melting, burning and flame spread of polymers with the particle finite element method. Comput Assist Methods Eng Sci 20:165–184MathSciNet
25.
go back to reference Idelsohn S, Oñate E, Del Pin F (2004) The Particle Finite Element Method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61:964–989MathSciNetCrossRef Idelsohn S, Oñate E, Del Pin F (2004) The Particle Finite Element Method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61:964–989MathSciNetCrossRef
26.
go back to reference Oliver X, Agelet de Saracibar C (2017) In continuum mechanics for engineers. Theory and problems Oliver X, Agelet de Saracibar C (2017) In continuum mechanics for engineers. Theory and problems
27.
go back to reference Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New YorkMATH Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New YorkMATH
28.
go back to reference Cox G (ed) (1995) Combustion fundamentals of fire. Academic Press, New York Cox G (ed) (1995) Combustion fundamentals of fire. Academic Press, New York
29.
30.
go back to reference Oñate E, Rossi R, Idelsohn SR, Butler K (2009) Melting and spread of polymers in fire with the particle finite element method. Int J Numer Methods Eng 81:1046–1072MATH Oñate E, Rossi R, Idelsohn SR, Butler K (2009) Melting and spread of polymers in fire with the particle finite element method. Int J Numer Methods Eng 81:1046–1072MATH
31.
go back to reference Codina R, Vazquez M, Zienkiewizc OC (1998) A general algorithm for compressible and incompressible flows. Int J Numer Methods Fluids 27:13–32CrossRef Codina R, Vazquez M, Zienkiewizc OC (1998) A general algorithm for compressible and incompressible flows. Int J Numer Methods Fluids 27:13–32CrossRef
32.
go back to reference Fiveland W (1991) The selection of discrete ordinate quadrature sets for anisotropic scattering . ASME Fundam Radiat Heat Transf 160:89–96 Fiveland W (1991) The selection of discrete ordinate quadrature sets for anisotropic scattering . ASME Fundam Radiat Heat Transf 160:89–96
33.
go back to reference Sousa Pessoa De Amorim MT, Comel C, Vermande P (1982) Pyrolysis of polypropylene. J Anal Appl Pyrolysis 4(1):73–81CrossRef Sousa Pessoa De Amorim MT, Comel C, Vermande P (1982) Pyrolysis of polypropylene. J Anal Appl Pyrolysis 4(1):73–81CrossRef
34.
go back to reference Xie W, DesJardin P (2009) An embedded upward flame spread model using 2d direct numerical simulations. Combust Flame 156(2):522–530CrossRef Xie W, DesJardin P (2009) An embedded upward flame spread model using 2d direct numerical simulations. Combust Flame 156(2):522–530CrossRef
35.
go back to reference Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified lagrangian formulation for elastic solids and incompressible fluids: Application to fluidstructure interaction problems via the pfem. Comput Methods Appl Mech Eng 197(19):1762–1776(Computational Methods in Fluid Structure Interaction) CrossRef Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified lagrangian formulation for elastic solids and incompressible fluids: Application to fluidstructure interaction problems via the pfem. Comput Methods Appl Mech Eng 197(19):1762–1776(Computational Methods in Fluid Structure Interaction) CrossRef
36.
go back to reference Delaunay B (1934) Sur la sphre vide. izvestia akademii nauk sssr. Otdelenie Matematicheskikh i Estestvennykh Nauk 7:793–800 Delaunay B (1934) Sur la sphre vide. izvestia akademii nauk sssr. Otdelenie Matematicheskikh i Estestvennykh Nauk 7:793–800
37.
go back to reference Idelsohn SR, Marti J, Souto-Iglesias A, Oñate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the pfem. Comput Mech 43(1):125–132CrossRef Idelsohn SR, Marti J, Souto-Iglesias A, Oñate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the pfem. Comput Mech 43(1):125–132CrossRef
38.
go back to reference Idelsohn SR, Mier-Torrecilla M, Marti J, Oñate E (2011) The particle finite element method for multi-fluid flows. In: Eugenio O, Roger O (eds) Particle-based methods: fundamentals and applications. Springer, Dordrecht, pp 135–158CrossRef Idelsohn SR, Mier-Torrecilla M, Marti J, Oñate E (2011) The particle finite element method for multi-fluid flows. In: Eugenio O, Roger O (eds) Particle-based methods: fundamentals and applications. Springer, Dordrecht, pp 135–158CrossRef
39.
go back to reference Oñate E, Idelsohn SR, Celigueta MA, Rossi R, Marti J, Carbonell JM, Ryzhakov P, Suárez B (2011) Advances in the particle finite element method (PFEM) for solving coupled problems in engineering. In: Eugenio O, Roger O (eds) Particle-based methods: fundamentals and applications. Springer, Dordrecht, pp 1–49CrossRef Oñate E, Idelsohn SR, Celigueta MA, Rossi R, Marti J, Carbonell JM, Ryzhakov P, Suárez B (2011) Advances in the particle finite element method (PFEM) for solving coupled problems in engineering. In: Eugenio O, Roger O (eds) Particle-based methods: fundamentals and applications. Springer, Dordrecht, pp 1–49CrossRef
40.
go back to reference Kundu PK, Cohen IM (2002) Fluid mechanics. Academic Press, New York Kundu PK, Cohen IM (2002) Fluid mechanics. Academic Press, New York
41.
go back to reference Hughes TJR (1989) The finite element method: Linear static and dynamic finite element analysis. Comput Aided Civil Infrastruct Eng 4(3):245–246 Hughes TJR (1989) The finite element method: Linear static and dynamic finite element analysis. Comput Aided Civil Infrastruct Eng 4(3):245–246
42.
go back to reference Idelsohn SR, Nigro N, Gimenez JM, Rossi R, Marti J (2013) A fast and accurate method to solve the incompressible navier-stokes equations. Eng Comput 30(2):197–222CrossRef Idelsohn SR, Nigro N, Gimenez JM, Rossi R, Marti J (2013) A fast and accurate method to solve the incompressible navier-stokes equations. Eng Comput 30(2):197–222CrossRef
43.
go back to reference Ryzhakov PB, Marti J, Idelsohn SR, Oñate E (2017) Fast fluidstructure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction. Comput Methods Appl Mech Eng 315:1080–1097CrossRef Ryzhakov PB, Marti J, Idelsohn SR, Oñate E (2017) Fast fluidstructure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction. Comput Methods Appl Mech Eng 315:1080–1097CrossRef
44.
go back to reference Donea J, Huerta A (2003) Finite element method for flow problems. Wiley, New YorkCrossRef Donea J, Huerta A (2003) Finite element method for flow problems. Wiley, New YorkCrossRef
45.
go back to reference Lohner R (2008) Applied CFD techniques, 2nd edn. Wiley, New YorkMATH Lohner R (2008) Applied CFD techniques, 2nd edn. Wiley, New YorkMATH
46.
go back to reference Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190(20–21):2681–2706MathSciNetCrossRef Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190(20–21):2681–2706MathSciNetCrossRef
47.
go back to reference Guermond JL, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Methods Appl Mech Eng 195:6011–6045MathSciNetCrossRef Guermond JL, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Methods Appl Mech Eng 195:6011–6045MathSciNetCrossRef
48.
go back to reference Temam R (1969) Sur lapproximation de la solution des equations de navier-stokes par la methode des pase fractionaires. Arch Ration Mech Anal 32:135–153CrossRef Temam R (1969) Sur lapproximation de la solution des equations de navier-stokes par la methode des pase fractionaires. Arch Ration Mech Anal 32:135–153CrossRef
49.
go back to reference Chorin AJ (1967) A numerical method for solving incompressible viscous problems. J Comput Phys 2:12–26CrossRef Chorin AJ (1967) A numerical method for solving incompressible viscous problems. J Comput Phys 2:12–26CrossRef
50.
go back to reference Ryzhakov P (2017) A modified fractional step method for fluid-structure interaction problems. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(1–2):58–64MathSciNetCrossRef Ryzhakov P (2017) A modified fractional step method for fluid-structure interaction problems. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(1–2):58–64MathSciNetCrossRef
51.
go back to reference Ryzhakov P, Marti J (2018) A semi-explicit multi-step method for solving incompressible Navier–Stokes equations. Appl Sci 8(1):119CrossRef Ryzhakov P, Marti J (2018) A semi-explicit multi-step method for solving incompressible Navier–Stokes equations. Appl Sci 8(1):119CrossRef
52.
go back to reference Ryzhakov P, Rossi R, Oñate E (2012) An algorithm for the simulation of thermally coupled low speed flow problems. Int J Numer Methods Fluids 70(1):1–19MathSciNetCrossRef Ryzhakov P, Rossi R, Oñate E (2012) An algorithm for the simulation of thermally coupled low speed flow problems. Int J Numer Methods Fluids 70(1):1–19MathSciNetCrossRef
53.
go back to reference Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297CrossRef Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297CrossRef
55.
go back to reference Kissinger H (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bureau Stand 57(4):217–221CrossRef Kissinger H (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bureau Stand 57(4):217–221CrossRef
56.
go back to reference Flynn J, Wall L (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett 4(5):323–328CrossRef Flynn J, Wall L (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett 4(5):323–328CrossRef
57.
go back to reference Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886CrossRef Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886CrossRef
61.
go back to reference Wang Y, Zhang J, Jow J, Su K (2009) Analysis and modeling of ignitability of polymers in the ul-94 vertical burning test condition. J Fire Sci 27:561–581CrossRef Wang Y, Zhang J, Jow J, Su K (2009) Analysis and modeling of ignitability of polymers in the ul-94 vertical burning test condition. J Fire Sci 27:561–581CrossRef
62.
go back to reference Wang Y, Zhang F, Jiao C, Jin Y, Zhang J (2010) Convective heat transfer of the bunsen flame in the ul94 vertical burning test for polymers. J Fire Sci 28:337–356CrossRef Wang Y, Zhang F, Jiao C, Jin Y, Zhang J (2010) Convective heat transfer of the bunsen flame in the ul94 vertical burning test for polymers. J Fire Sci 28:337–356CrossRef
Metadata
Title
A Finite Element Model for the Simulation of the UL-94 Burning Test
Authors
Julio Marti
Sergio R. Idelsohn
Eugenio Oñate
Publication date
01-09-2018
Publisher
Springer US
Published in
Fire Technology / Issue 6/2018
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-018-0769-0

Other articles of this Issue 6/2018

Fire Technology 6/2018 Go to the issue