Skip to main content
Top
Published in: Journal of Materials Science 28/2021

12-07-2021 | Electronic materials

A flexible composite phase change material with ultrahigh stretchability for thermal management in wearable electronics

Authors: Na Sun, Xiangqing Li

Published in: Journal of Materials Science | Issue 28/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Application of phase change materials (PCMs)-based thermal management technology in flexible electronic devices has been inhibited due to the leakage and strong rigidity of PCMs. A novel flexible composite PCMs with ultrahigh extensibility was developed in this paper. Concretely, a kind of paraffin@copper (PA@Cu) microcapsule with paraffin as core and nano-Cu particle as “flexible” metal shell was prepared by a simple Pickering emulsion method in an aqueous medium. The encapsulation ratio of paraffin reached 98wt%. Then the PA@Cu microcapsules were introduced into uncured liquid silicone to fabricate flexible composite PCMs (PA@Cu/SE). SEM results demonstrated that the microcapsules were tightly and uniformly wrapped in the three-dimensional network structure of silicone elastomer matrix. Owing to the good compatibility of PA@Cu with the polymer elastomer and a barrier for the melted PA provided by the “flexible” nano-Cu shell, the resulting composite PCMs present superior flexibility and thermal reliability. Tensile tests showed that the flexible composites with a relative higher loading of PA@Cu (40wt%) exhibit outstandingly larger extensibility (> 730%) than many reported literatures. In addition, the composites presenting superior thermal protection for biological tissue make them well-suited for thermal management in wearable electronics.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Huang YH, Cheng WL, Zhao R (2019) Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Conver Manage 182:9–20CrossRef Huang YH, Cheng WL, Zhao R (2019) Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Conver Manage 182:9–20CrossRef
2.
go back to reference Tauseef-ur-Rehman AHM, Janjua MM, Sajjad U, Yan WM (2019) A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Tran 135:649–673CrossRef Tauseef-ur-Rehman AHM, Janjua MM, Sajjad U, Yan WM (2019) A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Tran 135:649–673CrossRef
3.
go back to reference Nagar S, Sharma K (2020) Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials. J Mater Sci 56:4941–4966CrossRef Nagar S, Sharma K (2020) Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials. J Mater Sci 56:4941–4966CrossRef
4.
go back to reference Sun Z, Zhao L, Wan H, Liu H, Wu D, Wang X (2020) Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors. Chem Eng J 396:125317CrossRef Sun Z, Zhao L, Wan H, Liu H, Wu D, Wang X (2020) Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors. Chem Eng J 396:125317CrossRef
5.
go back to reference Nofal M, Al-Hallaj S, Pan Y (2020) Thermal management of lithium-ion battery cells using 3D printed phase change composites. Appl Therm Eng 171:115126CrossRef Nofal M, Al-Hallaj S, Pan Y (2020) Thermal management of lithium-ion battery cells using 3D printed phase change composites. Appl Therm Eng 171:115126CrossRef
6.
go back to reference Umair MM, Zhang Y, Iqbal K, Zhang S, Tang B (2019) Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–a review. Appl Energy 235:846–873CrossRef Umair MM, Zhang Y, Iqbal K, Zhang S, Tang B (2019) Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–a review. Appl Energy 235:846–873CrossRef
7.
go back to reference Zhou L, Tang LS, Tao XF, Yang J, Yang MB, Yang W (2020) Facile fabrication of shape-stabilized polyethylene glycol/cellulose nanocrystal phase change materials based on thiol-ene click chemistry and solvent exchange. Chem Eng J 396:125206CrossRef Zhou L, Tang LS, Tao XF, Yang J, Yang MB, Yang W (2020) Facile fabrication of shape-stabilized polyethylene glycol/cellulose nanocrystal phase change materials based on thiol-ene click chemistry and solvent exchange. Chem Eng J 396:125206CrossRef
8.
go back to reference Yoo Y, Martinez C, Youngblood JP (2017) Synthesis and characterization of microencapsulated phase change materials with poly(urea-urethane):shells containing cellulose nanocrystals. ACS Appl Mater Interfaces 9:31763–31776CrossRef Yoo Y, Martinez C, Youngblood JP (2017) Synthesis and characterization of microencapsulated phase change materials with poly(urea-urethane):shells containing cellulose nanocrystals. ACS Appl Mater Interfaces 9:31763–31776CrossRef
9.
go back to reference Alva G, Lin Y, Liu L, Fang G (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy Buildings 144:276–294CrossRef Alva G, Lin Y, Liu L, Fang G (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy Buildings 144:276–294CrossRef
10.
go back to reference Tang F, Liu L, Alva G, Jia Y, Fang G (2017) Synthesis and properties of microencapsulated octadecane with silica shell as shape–stabilized thermal energy storage materials. Sol Energy Mater Sol Cells 160:1–6CrossRef Tang F, Liu L, Alva G, Jia Y, Fang G (2017) Synthesis and properties of microencapsulated octadecane with silica shell as shape–stabilized thermal energy storage materials. Sol Energy Mater Sol Cells 160:1–6CrossRef
11.
go back to reference Huang J, Zhang B, He M, Huang X, Wu G, Yin G, Cui Y (2020) Preparation of anisotropic reduced graphene oxide/BN/paraffin composite phase change materials and investigation of their thermal properties. J Mater Sci 55:7337–7350CrossRef Huang J, Zhang B, He M, Huang X, Wu G, Yin G, Cui Y (2020) Preparation of anisotropic reduced graphene oxide/BN/paraffin composite phase change materials and investigation of their thermal properties. J Mater Sci 55:7337–7350CrossRef
12.
go back to reference Atinafu DG, Chang SJ, Kim KH, Dong W, Kim S (2020) A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal–organic framework. Chem Eng J 389:124430CrossRef Atinafu DG, Chang SJ, Kim KH, Dong W, Kim S (2020) A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal–organic framework. Chem Eng J 389:124430CrossRef
13.
go back to reference Hu H (2020) Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. Compos Part B 195:108094CrossRef Hu H (2020) Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. Compos Part B 195:108094CrossRef
14.
go back to reference Ma T, Li L, Wang Q, Guo C (2018) High-performance flame retarded paraffin/epoxy resin form-stable phase change material. J Mater Sci 54:875–885CrossRef Ma T, Li L, Wang Q, Guo C (2018) High-performance flame retarded paraffin/epoxy resin form-stable phase change material. J Mater Sci 54:875–885CrossRef
15.
go back to reference Yang Y, Ye X, Luo J, Song G, Liu Y, Tang G (2015) Polymethyl methacrylate based phase change microencapsulation for solar energy storage with silicon nitride. Sol Energy 115:289–296CrossRef Yang Y, Ye X, Luo J, Song G, Liu Y, Tang G (2015) Polymethyl methacrylate based phase change microencapsulation for solar energy storage with silicon nitride. Sol Energy 115:289–296CrossRef
16.
go back to reference Ramakrishnan S, Sanjayan J, Wang X, Alam M, Wilson J (2015) A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Appl Energy 157:85–94CrossRef Ramakrishnan S, Sanjayan J, Wang X, Alam M, Wilson J (2015) A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Appl Energy 157:85–94CrossRef
17.
go back to reference Zhu Y, Chi Y, Liang S, Luo X, Chen K, Tian C, Wang J, Zhang L (2018) Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage. Sol Energy Mater Sol Cells 176:212–221CrossRef Zhu Y, Chi Y, Liang S, Luo X, Chen K, Tian C, Wang J, Zhang L (2018) Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage. Sol Energy Mater Sol Cells 176:212–221CrossRef
18.
go back to reference Xu B, Zhou J, Ni Z, Zhang C, Lu C (2018) Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion. Sol Energy Mater Sol Cells 179:87–94CrossRef Xu B, Zhou J, Ni Z, Zhang C, Lu C (2018) Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion. Sol Energy Mater Sol Cells 179:87–94CrossRef
19.
go back to reference Yang H, Wang Y, Yu Q, Cao G, Sun X, Yang R, Zhang Q, Liu F, Di X, Li J, Wang C, Li G (2018) Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy 159:929–936CrossRef Yang H, Wang Y, Yu Q, Cao G, Sun X, Yang R, Zhang Q, Liu F, Di X, Li J, Wang C, Li G (2018) Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy 159:929–936CrossRef
20.
go back to reference Qiu J, Fan X, Shi Y, Zhang S, Jin X, Wang W, Tang B (2019) PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content. J Mater Chem A 7:21371–21377CrossRef Qiu J, Fan X, Shi Y, Zhang S, Jin X, Wang W, Tang B (2019) PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content. J Mater Chem A 7:21371–21377CrossRef
21.
go back to reference Yang W, Zhang L, Guo Y, Jiang Z, He F, Xie C, Fan J, Wu J, Zhang K (2017) Novel segregated-structure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity. J Mater Sci 53:2566–2575CrossRef Yang W, Zhang L, Guo Y, Jiang Z, He F, Xie C, Fan J, Wu J, Zhang K (2017) Novel segregated-structure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity. J Mater Sci 53:2566–2575CrossRef
22.
go back to reference Feng Z, Li Y, He F, Li Y, Zhou Y, Yang Z, He R, Zhang K, Yang W (2020) Experimental and numerical simulation of phase change process for paraffin in three-dimensional graphene aerogel. Appl Therm Eng 167:114773CrossRef Feng Z, Li Y, He F, Li Y, Zhou Y, Yang Z, He R, Zhang K, Yang W (2020) Experimental and numerical simulation of phase change process for paraffin in three-dimensional graphene aerogel. Appl Therm Eng 167:114773CrossRef
23.
go back to reference Li G, Hong G, Dong D, Song W, Zhang X (2018) Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv Mater 30:e1801754CrossRef Li G, Hong G, Dong D, Song W, Zhang X (2018) Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv Mater 30:e1801754CrossRef
24.
go back to reference Wang W, Cai Y, Du M, Hou X, Liu J, Ke H, Wei Q (2019) Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability. ACS Appl Mater Interfaces 11:31997–32007CrossRef Wang W, Cai Y, Du M, Hou X, Liu J, Ke H, Wei Q (2019) Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability. ACS Appl Mater Interfaces 11:31997–32007CrossRef
25.
go back to reference Chen X, Gao H, Hai G, Jia D, Xing L, Chen S, Cheng P, Han M, Dong W, Wang G (2020) Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater 26:129–137CrossRef Chen X, Gao H, Hai G, Jia D, Xing L, Chen S, Cheng P, Han M, Dong W, Wang G (2020) Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater 26:129–137CrossRef
26.
go back to reference Chen R, Huang X, Deng W, Zheng R, Aftab W, Shi J, Xie D, Zou R, Mei Y (2020) Facile preparation of flexible eicosane/SWCNTs phase change films via colloid aggregation for thermal energy storage. Appl Energy 260:114320CrossRef Chen R, Huang X, Deng W, Zheng R, Aftab W, Shi J, Xie D, Zou R, Mei Y (2020) Facile preparation of flexible eicosane/SWCNTs phase change films via colloid aggregation for thermal energy storage. Appl Energy 260:114320CrossRef
27.
go back to reference Wu W, Wu W, Wang S (2019) Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl Energy 236:10–21CrossRef Wu W, Wu W, Wang S (2019) Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl Energy 236:10–21CrossRef
28.
go back to reference Li W, Wang F, Cheng W, Chen X, Zhao Q (2020) Study of using enhanced heat-transfer flexible phase change material film in thermal management of compact electronic device. Energy Conver Manage 210:112680CrossRef Li W, Wang F, Cheng W, Chen X, Zhao Q (2020) Study of using enhanced heat-transfer flexible phase change material film in thermal management of compact electronic device. Energy Conver Manage 210:112680CrossRef
29.
go back to reference Aftab W, Mahmood A, Guo W, Yousaf M, Tabassum H, Huang X, Liang Z, Cao A, Zou R (2019) Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater 20:401–409CrossRef Aftab W, Mahmood A, Guo W, Yousaf M, Tabassum H, Huang X, Liang Z, Cao A, Zou R (2019) Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater 20:401–409CrossRef
30.
go back to reference Weng M, Chen L, Zhou P, Li J, Huang Z, Zhang W (2016) Low-voltage-driven, flexible and durable paraffin–polydimethylsiloxane-based composite film with switchable transparency. Chem Eng J 295:295–300CrossRef Weng M, Chen L, Zhou P, Li J, Huang Z, Zhang W (2016) Low-voltage-driven, flexible and durable paraffin–polydimethylsiloxane-based composite film with switchable transparency. Chem Eng J 295:295–300CrossRef
31.
go back to reference Wu H, Chen R, Shao Y, Qi X, Yang J, Wang Y (2019) Novel flexible phase change materials with mussel-Inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability. ACS Sustain Chem Eng 7:13532–13542CrossRef Wu H, Chen R, Shao Y, Qi X, Yang J, Wang Y (2019) Novel flexible phase change materials with mussel-Inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability. ACS Sustain Chem Eng 7:13532–13542CrossRef
32.
go back to reference Feng CP, Chen LB, Tian GL, Wan SS, Bai L, Bao RY, Liu ZY, Yang MB, Yang W (2019) Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics. ACS Appl Mater Interfaces 11:18739–18745CrossRef Feng CP, Chen LB, Tian GL, Wan SS, Bai L, Bao RY, Liu ZY, Yang MB, Yang W (2019) Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics. ACS Appl Mater Interfaces 11:18739–18745CrossRef
33.
go back to reference Zeng X, Ye L, Guo K, Sun R, Xu J, Wong CP (2016) Fibrous epoxy substrate with high thermal conductivity and low dielectric property for flexible electronics. Adv Electron Mater 2:1500485CrossRef Zeng X, Ye L, Guo K, Sun R, Xu J, Wong CP (2016) Fibrous epoxy substrate with high thermal conductivity and low dielectric property for flexible electronics. Adv Electron Mater 2:1500485CrossRef
34.
go back to reference Li J, Zhao X, Wu W, Zhang Z, Xian Y, Li Yn LuY, Zhang L (2020) Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability. Carbon 162:46–55CrossRef Li J, Zhao X, Wu W, Zhang Z, Xian Y, Li Yn LuY, Zhang L (2020) Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability. Carbon 162:46–55CrossRef
35.
go back to reference Shi Y, Wang C, Yin Y, Li Y, Xing Y, Song J (2019) Functional soft composites as thermal protecting substrates for wearable electronics. Adv Funct Mater 29:1905470CrossRef Shi Y, Wang C, Yin Y, Li Y, Xing Y, Song J (2019) Functional soft composites as thermal protecting substrates for wearable electronics. Adv Funct Mater 29:1905470CrossRef
36.
go back to reference Sun N, Xiao Z (2017) Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage. Energy Fuels 31:10186–10195CrossRef Sun N, Xiao Z (2017) Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage. Energy Fuels 31:10186–10195CrossRef
37.
go back to reference Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100–102:503–546CrossRef Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100–102:503–546CrossRef
38.
go back to reference He Y, Wu F, Sun X, Li R, Guo Y, Li C, Zhang L, Xing F, Wang W, Gao J (2013) Factors that affect pickering emulsions stabilized by graphene oxide. ACS Appl Mater Interfaces 5:4843–4855CrossRef He Y, Wu F, Sun X, Li R, Guo Y, Li C, Zhang L, Xing F, Wang W, Gao J (2013) Factors that affect pickering emulsions stabilized by graphene oxide. ACS Appl Mater Interfaces 5:4843–4855CrossRef
39.
go back to reference Sun N, Xiao Z (2016) Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage. J Mater Sci 51:8550–8561CrossRef Sun N, Xiao Z (2016) Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage. J Mater Sci 51:8550–8561CrossRef
40.
go back to reference Li C, Fu L, Ouyang J, Tang A, Yang H (2015) Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Appl Clay Sci 115:212–220CrossRef Li C, Fu L, Ouyang J, Tang A, Yang H (2015) Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Appl Clay Sci 115:212–220CrossRef
41.
go back to reference Guo Y, Yang W, Jiang Z, He F, Zhang K, He R, Wu J, Fan J (2019) Silicone rubber/paraffin@silicon dioxide form-stable phase change materials with thermal energy storage and enhanced mechanical property. Sol Energy Mater Sol Cells 196:16–24CrossRef Guo Y, Yang W, Jiang Z, He F, Zhang K, He R, Wu J, Fan J (2019) Silicone rubber/paraffin@silicon dioxide form-stable phase change materials with thermal energy storage and enhanced mechanical property. Sol Energy Mater Sol Cells 196:16–24CrossRef
42.
go back to reference Sun N, Xiao Z (2017) Improvement of the thermostability of silicone oil/polystyrene microcapsules by embedding TiO2/Si3N4 nanocomposites as outer shell. J Mater Sci 52:10800–10813CrossRef Sun N, Xiao Z (2017) Improvement of the thermostability of silicone oil/polystyrene microcapsules by embedding TiO2/Si3N4 nanocomposites as outer shell. J Mater Sci 52:10800–10813CrossRef
43.
go back to reference Rezaie AB, Montazer M (2018) One-step fabrication of fatty acids/nano copper/polyester shape-stable composite phase change material for thermal energy management and storage. Appl Energy 228:1911–1920CrossRef Rezaie AB, Montazer M (2018) One-step fabrication of fatty acids/nano copper/polyester shape-stable composite phase change material for thermal energy management and storage. Appl Energy 228:1911–1920CrossRef
44.
go back to reference Song J, Chen C, Zhang Y (2018) High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films. Compos A 105:1–8CrossRef Song J, Chen C, Zhang Y (2018) High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films. Compos A 105:1–8CrossRef
45.
go back to reference Németh B, Németh ÁS, Tóth J, Fodor-Kardos A, Gyenis J, Feczkó T (2015) Consolidated microcapsules with double alginate shell containing paraffin for latent heat storage. Sol Energy Mater Sol Cells 143:397–405CrossRef Németh B, Németh ÁS, Tóth J, Fodor-Kardos A, Gyenis J, Feczkó T (2015) Consolidated microcapsules with double alginate shell containing paraffin for latent heat storage. Sol Energy Mater Sol Cells 143:397–405CrossRef
46.
go back to reference Lyu J, Liu Z, Wu X, Li G, Fang D, Zhang X (2019) Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13:2236–2245 Lyu J, Liu Z, Wu X, Li G, Fang D, Zhang X (2019) Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13:2236–2245
47.
go back to reference Cheng P, Gao H, Chen X, Chen Y, Han M, Xing L, Liu P, Wang G (2020) Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chem Eng J 397:125330CrossRef Cheng P, Gao H, Chen X, Chen Y, Han M, Xing L, Liu P, Wang G (2020) Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chem Eng J 397:125330CrossRef
48.
go back to reference Wang Y, Li X, Cheng H, Wang B, Feng X, Zo Ma, Sui X (2020) Facile fabrication of robust and stretchable cellulose nanofibers/polyurethane hybrid aerogels. ACS Sustain Chem Eng 8:8977–8985CrossRef Wang Y, Li X, Cheng H, Wang B, Feng X, Zo Ma, Sui X (2020) Facile fabrication of robust and stretchable cellulose nanofibers/polyurethane hybrid aerogels. ACS Sustain Chem Eng 8:8977–8985CrossRef
49.
go back to reference Wu S, Li T, Wu M, Xu J, Hu Y, Chao J, Yan T, Wang R (2020) Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. J Mater Chem A 8:20011–20020CrossRef Wu S, Li T, Wu M, Xu J, Hu Y, Chao J, Yan T, Wang R (2020) Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. J Mater Chem A 8:20011–20020CrossRef
50.
go back to reference Qian Y, Han N, Zhang Z, Cao R, Tan L, Li W, Zhang X (2019) Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Appl Mater Interfaces 11:45832–45843CrossRef Qian Y, Han N, Zhang Z, Cao R, Tan L, Li W, Zhang X (2019) Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Appl Mater Interfaces 11:45832–45843CrossRef
51.
go back to reference Armstrong DP, Chatterjee K, Ghosh TK, Spontak RJ (2020) Form-stable phase-change elastomer gels derived from thermoplastic elastomer copolyesters swollen with fatty acids. Thermochim Acta 686:178566CrossRef Armstrong DP, Chatterjee K, Ghosh TK, Spontak RJ (2020) Form-stable phase-change elastomer gels derived from thermoplastic elastomer copolyesters swollen with fatty acids. Thermochim Acta 686:178566CrossRef
52.
go back to reference Cai Z, Liu J, Zhou Y, Dai L, Wang H, Liao C, Zou X, Chen Y, Xu Y (2021) Flexible phase change materials with enhanced tensile strength, thermal conductivity and photo-thermal performance. Sol Energy Mater Sol Cells 219:110728CrossRef Cai Z, Liu J, Zhou Y, Dai L, Wang H, Liao C, Zou X, Chen Y, Xu Y (2021) Flexible phase change materials with enhanced tensile strength, thermal conductivity and photo-thermal performance. Sol Energy Mater Sol Cells 219:110728CrossRef
53.
go back to reference Li WW, Cheng WL, Xie B, Liu N, Zhang LS (2017) Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Convers Manage 149:1–12CrossRef Li WW, Cheng WL, Xie B, Liu N, Zhang LS (2017) Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Convers Manage 149:1–12CrossRef
54.
go back to reference Qi X, Shao Y, Wu H, Yang J, Wang Y (2019) Flexible phase change composite materials with simultaneous light energy storage and light-actuated shape memory capability. Compos Sci Technol 181:107714CrossRef Qi X, Shao Y, Wu H, Yang J, Wang Y (2019) Flexible phase change composite materials with simultaneous light energy storage and light-actuated shape memory capability. Compos Sci Technol 181:107714CrossRef
55.
go back to reference Umair MM, ZhangY ZS, Jin X, Tang B (2019) A novel flexible phase change composite with electro-driven shape memory, energy conversion/storage and motion sensing properties. J Mater Chem A 7:26385–26392CrossRef Umair MM, ZhangY ZS, Jin X, Tang B (2019) A novel flexible phase change composite with electro-driven shape memory, energy conversion/storage and motion sensing properties. J Mater Chem A 7:26385–26392CrossRef
56.
go back to reference Shi J, Aftab W, Liang Z, Yuan K, Maqbool M, Jiang H, Xiong F, Qin M, Gao S, Zo Ru (2020) Tuning the flexibility and thermal storage capacity of solid–solid phase change materials towards wearable applications. J Mater Chem A 8:20133–20140CrossRef Shi J, Aftab W, Liang Z, Yuan K, Maqbool M, Jiang H, Xiong F, Qin M, Gao S, Zo Ru (2020) Tuning the flexibility and thermal storage capacity of solid–solid phase change materials towards wearable applications. J Mater Chem A 8:20133–20140CrossRef
57.
go back to reference Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy 88:3133–3139CrossRef Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy 88:3133–3139CrossRef
58.
go back to reference Shi Y, Hu M, Xing Y, Li Y (2020) Temperature-dependent thermal and mechanical properties of flexible functional PDMS/paraffin composites. Mater Design 185:108219CrossRef Shi Y, Hu M, Xing Y, Li Y (2020) Temperature-dependent thermal and mechanical properties of flexible functional PDMS/paraffin composites. Mater Design 185:108219CrossRef
59.
go back to reference He Y, Li W, Han N, Wang J, Zhang X (2019) Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl Energy 247:615–629CrossRef He Y, Li W, Han N, Wang J, Zhang X (2019) Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl Energy 247:615–629CrossRef
60.
go back to reference Bartlett MD, Kazem N, Powell-Palm MJ, Huang X, Sun W, Malen JA, Majidi C (2017) High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA 114:2143–2214CrossRef Bartlett MD, Kazem N, Powell-Palm MJ, Huang X, Sun W, Malen JA, Majidi C (2017) High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA 114:2143–2214CrossRef
Metadata
Title
A flexible composite phase change material with ultrahigh stretchability for thermal management in wearable electronics
Authors
Na Sun
Xiangqing Li
Publication date
12-07-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 28/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06290-6

Other articles of this Issue 28/2021

Journal of Materials Science 28/2021 Go to the issue

Premium Partners