Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

12-08-2019 | Original Research Paper | Issue 3/2019

Service Oriented Computing and Applications 3/2019

A focus on future cloud: machine learning-based cloud security

Journal:
Service Oriented Computing and Applications > Issue 3/2019
Authors:
E. K. Subramanian, Latha Tamilselvan
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recent days have seen an apparent shift in most of the organizations moving towards using cloud environment and various cloud-based services. In order to protect and safeguard the transactions made by organizations over cloud environment, it is highly essential to provide a secure and robust environmental solution across cloud space. Existing approaches such as linear regression and support vector machine have been tried to promote cyber-security in the market by performing static verification of cloud user behaviour in order to identify pre-defined threats. Due to their static nature, these security solutions are restricted in their functionality. When it comes to access control, the decision making involves performing a permit or block operation. Also, the earlier methods face difficulties in terms of data protection over the endpoints which are not managed by the cloud. In order to solve the above-said problems, this paper is focused on designing a novel security solution for cloud applications using machine learning (ML) approaches. The main objective of this paper is to shape the future generation of cloud security using one of the ML algorithms such as convolution neural network because CNN can provide automatic and responsive approaches to enhance security in cloud environment. Instead of focusing only on detecting and identifying sensitive data patterns, ML can provide solutions which incorporate holistic algorithms for secure enterprise data throughout all the cloud applications. The proposed ML algorithm is experimented, results are verified and performance is evaluated by comparing with the existing approaches.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2019

Service Oriented Computing and Applications 3/2019 Go to the issue

Premium Partner

    Image Credits