Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Natural Computing 3/2021

09-01-2021

A framework for designing of genetic operators automatically based on gene expression programming and differential evolution

Authors: Dazhi Jiang, Zhihang Tian, Zhihui He, Geng Tu, Ruixiang Huang

Published in: Natural Computing | Issue 3/2021

Login to get access
share
SHARE

Abstract

The design of genetic operators is absolutely one of the core work of evolutionary algorithms research. However, the essence of the evolutionary algorithms is that a lot of algorithm design is based on the manual result analysis, summarize, refine, feedback, and then, the algorithms are designed adaptively and correspondingly. This kind of design scheme needs artificial statistics and analysis of large amounts of data, which greatly increases the burden of the designers. To solve this problem, an evolutionary algorithm framework based on genetic operator automatic design is proposed in this paper. In the first step, Gene Expression Programming and Differential Evolution methods are combined together and used to design the genetic operators automatically and adaptively, this hybrid method can not only explore solutions in problem space for the problem solving as most classical evolutionary algorithms do, but also generate genetic operators automatically in operator space for the proper operators extraction and selection related to the evolutionary algorithms . In the second step, the designed operators are adopted into the typical evolutionary algorithms to verify the performance and the result shows that the new designed genetic operator is superior to or at least equivalent to some existing DE variants in a set of classical benchmark functions. More importantly, this paper is not aimed at designing high performance algorithms, but to provide a new perspective for algorithms designing, and to provide a reference scheme for the machine algorithms designing.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
go back to reference Antoniouk AV, Khrennikov AY, Kochubei AN (2019) Multidimensional nonlinear pseudo-differential evolution equation with p-adic spatial variables. J Pseudo Differ Oper Appl 2019(50) Antoniouk AV, Khrennikov AY, Kochubei AN (2019) Multidimensional nonlinear pseudo-differential evolution equation with p-adic spatial variables. J Pseudo Differ Oper Appl 2019(50)
go back to reference Arram A, Ayob M (2019) A novel multi-parent order crossover in genetic algorithm for combinatorial optimization problems. Comput Ind Eng 133 Arram A, Ayob M (2019) A novel multi-parent order crossover in genetic algorithm for combinatorial optimization problems. Comput Ind Eng 133
go back to reference Brest J, Maučec MS (2011) Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft Comput 15(11):2157–2174 CrossRef Brest J, Maučec MS (2011) Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft Comput 15(11):2157–2174 CrossRef
go back to reference Chen F, Shi J, Ma Y, Lei Y, Gong M (2017) Differential evolution algorithm with learning selection strategy for SAR image change detection. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 450–457 Chen F, Shi J, Ma Y, Lei Y, Gong M (2017) Differential evolution algorithm with learning selection strategy for SAR image change detection. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 450–457
go back to reference Contreras-Bolton C, Parada V (2015) Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem. PloS ONE 10(9):e0137724 CrossRef Contreras-Bolton C, Parada V (2015) Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem. PloS ONE 10(9):e0137724 CrossRef
go back to reference Diosan L, Oltean M (2009) Evolutionary design of evolutionary algorithms. Genetic Program Evolv Mach 10(3):263–306 CrossRef Diosan L, Oltean M (2009) Evolutionary design of evolutionary algorithms. Genetic Program Evolv Mach 10(3):263–306 CrossRef
go back to reference Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129 MathSciNetMATH Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129 MathSciNetMATH
go back to reference Goldberg DE (1989) Genetic algorithms in search, Optimization and machine learning, October Goldberg DE (1989) Genetic algorithms in search, Optimization and machine learning, October
go back to reference Hong L, Drake JH, Woodward JR, Özcan E (2018) A hyper-heuristic approach to automated generation of mutation operators for evolutionary programming. Appl Soft Comput 62:162–175 CrossRef Hong L, Drake JH, Woodward JR, Özcan E (2018) A hyper-heuristic approach to automated generation of mutation operators for evolutionary programming. Appl Soft Comput 62:162–175 CrossRef
go back to reference Ibrahim Abdelmonem M, Tawhid Mohamed A (2019) A hybridization of cuckoo search and particle swarm optimization for solving nonlinear systems. Evolut Intell 2019(6) Ibrahim Abdelmonem M, Tawhid Mohamed A (2019) A hybridization of cuckoo search and particle swarm optimization for solving nonlinear systems. Evolut Intell 2019(6)
go back to reference Jiang Dazhi Wu, Kaichao Chen Dicheng, Geng Tu, Teng Zhou, Akhil Garg, Liang Gao (2020) A probability and integrated learning based classification algorithm for high-level human emotion recognition problems. Measurements 150:107049 Jiang Dazhi Wu, Kaichao Chen Dicheng, Geng Tu, Teng Zhou, Akhil Garg, Liang Gao (2020) A probability and integrated learning based classification algorithm for high-level human emotion recognition problems. Measurements 150:107049
go back to reference Jiang D, Fan Z (2014) The algorithm for algorithms: an evolutionary algorithm based on automatically designing of genetic operators. Math Probl Eng 2:66–70 Jiang D, Fan Z (2014) The algorithm for algorithms: an evolutionary algorithm based on automatically designing of genetic operators. Math Probl Eng 2:66–70
go back to reference Jiang Dazhi, Zhijian Wu, Kang Lishan (2006) New method used in gene expression programming: GRCM. J Syst Simul 18:1466–1468 Jiang Dazhi, Zhijian Wu, Kang Lishan (2006) New method used in gene expression programming: GRCM. J Syst Simul 18:1466–1468
go back to reference Jiang D, Peng C, Fan Z (2014) Evolutionary algorithm based on automatically designing of genetic operators. In: 2013 9th international conference on computational intelligence and security. IEEE, pp 66–70 Jiang D, Peng C, Fan Z (2014) Evolutionary algorithm based on automatically designing of genetic operators. In: 2013 9th international conference on computational intelligence and security. IEEE, pp 66–70
go back to reference Jiang DT, Geng JD, Kaichao W, Cheng L, Lin Z, Teng Z (2020) A hybrid intelligent model for acute hypotensive episode prediction with large-scale data. Inf Sci Jiang DT, Geng JD, Kaichao W, Cheng L, Lin Z, Teng Z (2020) A hybrid intelligent model for acute hypotensive episode prediction with large-scale data. Inf Sci
go back to reference Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. IEEE Press, pp 1942–1948 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. IEEE Press, pp 1942–1948
go back to reference Koza JR (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge MATH Koza JR (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge MATH
go back to reference Liang J, Wang P, Guo L et al (2019) Multi-objective flow shop scheduling with limited buffers using hybrid self-adaptive differential evolution. Memetic Comput (6) Liang J, Wang P, Guo L et al (2019) Multi-objective flow shop scheduling with limited buffers using hybrid self-adaptive differential evolution. Memetic Comput (6)
go back to reference Lin Q, Tang C, Ma Y, Du Z, Li J, Chen J, Ming Z (2017) A novel adaptive control strategy for decomposition-based multiobjective algorithm. Comput Oper Res 78:94–107 MathSciNetCrossRef Lin Q, Tang C, Ma Y, Du Z, Li J, Chen J, Ming Z (2017) A novel adaptive control strategy for decomposition-based multiobjective algorithm. Comput Oper Res 78:94–107 MathSciNetCrossRef
go back to reference Mahanipour A, Nezamabadi-Pour H (2019) GSP: an automatic programming technique with gravitational search algorithm. Appl Intell 49(4):1502–1516 CrossRef Mahanipour A, Nezamabadi-Pour H (2019) GSP: an automatic programming technique with gravitational search algorithm. Appl Intell 49(4):1502–1516 CrossRef
go back to reference Mallipeddi R, Mallipeddi S, Suganthan PN (2010) Ensemble strategies with adaptive evolutionary programming. Inf Sci 180(9):1571–1581 CrossRef Mallipeddi R, Mallipeddi S, Suganthan PN (2010) Ensemble strategies with adaptive evolutionary programming. Inf Sci 180(9):1571–1581 CrossRef
go back to reference Nyathi T, Pillay N (2018) Comparison of a genetic algorithm to grammatical evolution for automated design of genetic programming classification algorithms. Expert Syst Appl 104:213–234 CrossRef Nyathi T, Pillay N (2018) Comparison of a genetic algorithm to grammatical evolution for automated design of genetic programming classification algorithms. Expert Syst Appl 104:213–234 CrossRef
go back to reference Oltean M, Grosan C (2004) Evolving digital circuits using multi expression programming. In: Proceedings. 2004 NASA/DoD conference on evolvable hardware, 2004. IEEE Oltean M, Grosan C (2004) Evolving digital circuits using multi expression programming. In: Proceedings. 2004 NASA/DoD conference on evolvable hardware, 2004. IEEE
go back to reference Preen RJ, Smith J (2019) Evolutionary n-level hypergraph partitioning with adaptive coarsening. IEEE Trans Evolut Comput Preen RJ, Smith J (2019) Evolutionary n-level hypergraph partitioning with adaptive coarsening. IEEE Trans Evolut Comput
go back to reference Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13(2):398–417 CrossRef Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13(2):398–417 CrossRef
go back to reference Rodriguez-Coayahuitl L, Morales-Reyes A, Escalante HJ (2019) Evolving autoencoding structures through genetic programming. Genetic Program Evolv Mach 2019(8) Rodriguez-Coayahuitl L, Morales-Reyes A, Escalante HJ (2019) Evolving autoencoding structures through genetic programming. Genetic Program Evolv Mach 2019(8)
go back to reference Seront G, Bersini H (1996) Simplex GA and hybrid methods. In: Proceedings of IEEE international conference on evolutionary computation, 1996. IEEE Seront G, Bersini H (1996) Simplex GA and hybrid methods. In: Proceedings of IEEE international conference on evolutionary computation, 1996. IEEE
go back to reference Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359 MathSciNetCrossRef Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359 MathSciNetCrossRef
go back to reference Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82 CrossRef Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82 CrossRef
go back to reference Woodward JR, Swan J (2012). The automatic generation of mutation operators for genetic algorithms. In: Proceedings of the 14th annual conference companion on genetic and evolutionary computation. ACM, pp 67–74 Woodward JR, Swan J (2012). The automatic generation of mutation operators for genetic algorithms. In: Proceedings of the 14th annual conference companion on genetic and evolutionary computation. ACM, pp 67–74
go back to reference Xiao Guorong, Garg Akhil, Chen Dicheng, Jiang Dazhi (2019) AHE detection with a hybrid intelligence model in smart healthcare. IEEE Access 7(1):37360–37370 CrossRef Xiao Guorong, Garg Akhil, Chen Dicheng, Jiang Dazhi (2019) AHE detection with a hybrid intelligence model in smart healthcare. IEEE Access 7(1):37360–37370 CrossRef
go back to reference Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958 CrossRef Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958 CrossRef
go back to reference Zhong J, Ong YS, Cai W (2015) Self-learning gene expression programming. IEEE Trans Evolut Comput 20(1):65–80 CrossRef Zhong J, Ong YS, Cai W (2015) Self-learning gene expression programming. IEEE Trans Evolut Comput 20(1):65–80 CrossRef
Metadata
Title
A framework for designing of genetic operators automatically based on gene expression programming and differential evolution
Authors
Dazhi Jiang
Zhihang Tian
Zhihui He
Geng Tu
Ruixiang Huang
Publication date
09-01-2021
Publisher
Springer Netherlands
Published in
Natural Computing / Issue 3/2021
Print ISSN: 1567-7818
Electronic ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-020-09830-2

Other articles of this Issue 3/2021

Natural Computing 3/2021 Go to the issue

EditorialNotes

Preface

Premium Partner