Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

A Fully Automated Periodicity Detection in Time Series

Authors : Tom Puech, Matthieu Boussard, Anthony D’Amato, Gaëtan Millerand

Published in: Advanced Analytics and Learning on Temporal Data

Publisher: Springer International Publishing

share
SHARE

Abstract

This paper presents a method to autonomously find periodicities in a signal. It is based on the same idea of using Fourier Transform and autocorrelation function presented in [12]. While showing interesting results this method does not perform well on noisy signals or signals with multiple periodicities. Thus, our method adds several new extra steps (hints clustering, filtering and detrending) to fix these issues. Experimental results show that the proposed method outperforms state of the art algorithms.
Literature
2.
go back to reference Gooijer, J.G.D., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006). Twenty five years of forecasting CrossRef Gooijer, J.G.D., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006). Twenty five years of forecasting CrossRef
4.
go back to reference Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J.: Probabilistic energy forecasting: global energy forecasting competition 2014 and beyond. Int. J. Forecast. 32(3), 896–913 (2016) CrossRef Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J.: Probabilistic energy forecasting: global energy forecasting competition 2014 and beyond. Int. J. Forecast. 32(3), 896–913 (2016) CrossRef
6.
go back to reference Koopman, S.J., Ooms, M.: Forecasting daily time series using periodic unobserved components time series models. Comput. Stat. Data Anal. 51(2), 885–903 (2006) MathSciNetCrossRef Koopman, S.J., Ooms, M.: Forecasting daily time series using periodic unobserved components time series models. Comput. Stat. Data Anal. 51(2), 885–903 (2006) MathSciNetCrossRef
7.
go back to reference Li, Z., Ding, B., Rol, J.H., Nye, K.P.: Mining periodic behaviors for moving objects. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1099–1108. ACM (2010) Li, Z., Ding, B., Rol, J.H., Nye, K.P.: Mining periodic behaviors for moving objects. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1099–1108. ACM (2010)
9.
go back to reference Parthasarathy, S., Mehta, S., Srinivasan, S.: Robust periodicity detection algorithms. In: Proceedings of the 2006 ACM CIKM International Conference on Information and Knowledge Management, Arlington, Virginia, USA, November, pp. 874–875 (2006) Parthasarathy, S., Mehta, S., Srinivasan, S.: Robust periodicity detection algorithms. In: Proceedings of the 2006 ACM CIKM International Conference on Information and Knowledge Management, Arlington, Virginia, USA, November, pp. 874–875 (2006)
10.
go back to reference Quinn, F.H., Sellinger, C.E.: Lake Michigan record levels of 1838, a present perspective. J. Great Lakes Res. 16(1), 133–138 (1990) CrossRef Quinn, F.H., Sellinger, C.E.: Lake Michigan record levels of 1838, a present perspective. J. Great Lakes Res. 16(1), 133–138 (1990) CrossRef
11.
go back to reference Saad, E.W., Prokhorov, D.V., Wunsch, D.C.: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Trans. Neural Netw. 9(6), 1456–1470 (1998) CrossRef Saad, E.W., Prokhorov, D.V., Wunsch, D.C.: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Trans. Neural Netw. 9(6), 1456–1470 (1998) CrossRef
12.
go back to reference Vlachos, M., Yu, P.S., Castelli, V.: On periodicity detection and structural periodic similarity. In: Kargupta, H., Srivastava, J., Kamath, C., Goodman, A. (eds.) Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005, Newport Beach, CA, USA, 21–23 April 2005, pp. 449–460. SIAM (2005) Vlachos, M., Yu, P.S., Castelli, V.: On periodicity detection and structural periodic similarity. In: Kargupta, H., Srivastava, J., Kamath, C., Goodman, A. (eds.) Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005, Newport Beach, CA, USA, 21–23 April 2005, pp. 449–460. SIAM (2005)
13.
go back to reference Yuan, Q., Shang, J., Cao, X., Zhang, C., Geng, X., Han, J.: Detecting multiple periods and periodic patterns in event time sequences. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 617–626, ACM, New York (2017) Yuan, Q., Shang, J., Cao, X., Zhang, C., Geng, X., Han, J.: Detecting multiple periods and periodic patterns in event time sequences. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 617–626, ACM, New York (2017)
Metadata
Title
A Fully Automated Periodicity Detection in Time Series
Authors
Tom Puech
Matthieu Boussard
Anthony D’Amato
Gaëtan Millerand
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39098-3_4

Premium Partner