Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

06-02-2019 | Focus | Issue 8/2019

Soft Computing 8/2019

A fuzzy entropy technique for dimensionality reduction in recommender systems using deep learning

Journal:
Soft Computing > Issue 8/2019
Authors:
B. Saravanan, V. Mohanraj, J. Senthilkumar
Important notes
Communicated by P. Pandian.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recommenders utilize the knowledge discovery-based methods for identifying information required by the user. The recommender system faces some serious challenges in recent years to access exponentially increasing information due to high number of Web site users. Some of the challenges posed in this respect are: The system should assure high-quality recommendations and high coverage even during data sparsity and produce more recommendations per second based on million users. To improve the performance of the recommender system, selecting appropriate features from the available highly redundant information is a crucial task. The feature selection technique will bring down the dimensionality and also discard the redundant and the noise-corrupted features. The collaborative filtering-based methods will make use of the past activities or the preferences like the user ratings or content information of the products to regulate the top references. This work proposes a fuzzy entropy-based deep learning for the content features as well as a feature selection method. Deep learning-based recommender process takes extended important consideration by overwhelming difficulties of conventional models and attaining high reference excellence. A fuzzy entropy-based feature selection technique lowers the dimensionality of hyperspectral data.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2019

Soft Computing 8/2019 Go to the issue

Premium Partner

    Image Credits