Skip to main content
Top
Published in: Archive of Applied Mechanics 5/2021

24-01-2021 | Original

A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels

Authors: Muhammad Hamid, Muhammad Usman, Rizwan Ul Haq, Zhenfu Tian

Published in: Archive of Applied Mechanics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, we numerically analyzed the MHD flow of a nanofluid in converging/diverging channels through the Galerkin approach. The walls are assumed to be stretchable. The governing equations of flow are reduced to nonlinear ODE system by using the appropriate nondimensionalized technique. The results are simulated numerically by means of Galerkin method. A detailed evaluation of outcomes obtained by Galerkin scheme with the fourth-order Runge–Kutta technique (RK-4) is available to support our numerical results. The significant effects of the various physical parameters are presented graphically. Prandtl numbers cause an increase in the temperature profile, while they cause a decrease in the concentration profile. The shrinking decreases the fluid velocity nearby the channel walls, while the stretching of diverging channel provides an enhancement in flow nearby the channel walls. An identical behavior is found for the convergent channel. The influence of Grashof numbers is negligible but effect of opposing flow forces is a little dominant than assisting flow forces. The comparative study with existing literature and RK-4 as well as convergence analysis indicates that the proposed method is an efficient mathematical tool to analyze the problems arising in mechanics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jeffery, G.B.L.: The two-dimensional steady motion of a viscous fluid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 29(172), 455–465 (1915)CrossRef Jeffery, G.B.L.: The two-dimensional steady motion of a viscous fluid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 29(172), 455–465 (1915)CrossRef
2.
go back to reference Hamel, G.: Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresber Dtsch Math Ver 25, 34–60 (1916)MATH Hamel, G.: Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresber Dtsch Math Ver 25, 34–60 (1916)MATH
3.
go back to reference Turkyilmazoglu, M.: Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput. Fluids 100, 196–203 (2014)MathSciNetCrossRef Turkyilmazoglu, M.: Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput. Fluids 100, 196–203 (2014)MathSciNetCrossRef
4.
go back to reference Mohyud-Din, S.T., Khan, U., Ahmed, N., Hassan, S.M.: Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl. Sci. 5(4), 1639–1664 (2015)CrossRef Mohyud-Din, S.T., Khan, U., Ahmed, N., Hassan, S.M.: Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl. Sci. 5(4), 1639–1664 (2015)CrossRef
5.
go back to reference Mohyud-Din, S.T., Khan, U., Ahmed, N., Bin-Mohsin, B.: Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput. Appl. 28(12), 4079–4092 (2017)CrossRef Mohyud-Din, S.T., Khan, U., Ahmed, N., Bin-Mohsin, B.: Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput. Appl. 28(12), 4079–4092 (2017)CrossRef
6.
go back to reference Usman, M., Haq, R.U., Hamid, M., Wang, W.: Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. J. Mol. Liq. 249, 856–867 (2018)CrossRef Usman, M., Haq, R.U., Hamid, M., Wang, W.: Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. J. Mol. Liq. 249, 856–867 (2018)CrossRef
7.
go back to reference Duong, X.Q., Cao, N.V., Hong, S.W., Ahn, S.H., Chung, J.D.: Numerical study on the combined heat and mass recovery adsorption cooling cycle. Energy Technol. 6(2), 296–305 (2018)CrossRef Duong, X.Q., Cao, N.V., Hong, S.W., Ahn, S.H., Chung, J.D.: Numerical study on the combined heat and mass recovery adsorption cooling cycle. Energy Technol. 6(2), 296–305 (2018)CrossRef
8.
go back to reference Usman, M., Zubair, T., Hamid, M., Haq, R.U., Wang, W.: Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects. Phys. Fluids 30(2), 023104 (2018)CrossRef Usman, M., Zubair, T., Hamid, M., Haq, R.U., Wang, W.: Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects. Phys. Fluids 30(2), 023104 (2018)CrossRef
9.
go back to reference Usman, M., Soomro, F.A., Haq, R.U., Wang, W.: Effects of velocity and thermal slip on Casson nanofluid flow, heat and mass transfer over permeable inclined stretching cylinder. Int. J. Heat Mass Transf. 122, 1255–1263 (2018)CrossRef Usman, M., Soomro, F.A., Haq, R.U., Wang, W.: Effects of velocity and thermal slip on Casson nanofluid flow, heat and mass transfer over permeable inclined stretching cylinder. Int. J. Heat Mass Transf. 122, 1255–1263 (2018)CrossRef
10.
go back to reference Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME FED, vol. 231, pp. 99–105. WHO, New York (1995) Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME FED, vol. 231, pp. 99–105. WHO, New York (1995)
11.
go back to reference Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001)CrossRef Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001)CrossRef
12.
go back to reference Usman, M., Hamid, M., Khan, U., Mohyud-Din, S.T., Iqbal, M.A., Wang, W.: Differential transform method for unsteady nanofluid flow and heat transfer. Alex. Eng. J. 57, 1867–1875 (2018)CrossRef Usman, M., Hamid, M., Khan, U., Mohyud-Din, S.T., Iqbal, M.A., Wang, W.: Differential transform method for unsteady nanofluid flow and heat transfer. Alex. Eng. J. 57, 1867–1875 (2018)CrossRef
13.
go back to reference Mohyud-Din, S.T., Usman, M., Afaq, K., Hamid, M., Wang, W.: Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection. Eng. Comput. 34(7), 2330–2343 (2017)CrossRef Mohyud-Din, S.T., Usman, M., Afaq, K., Hamid, M., Wang, W.: Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection. Eng. Comput. 34(7), 2330–2343 (2017)CrossRef
14.
go back to reference Sheikholeslami, M., Sadoughi, M.K.: Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018)CrossRef Sheikholeslami, M., Sadoughi, M.K.: Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018)CrossRef
15.
go back to reference Usman, M., Hamid, M., Mohyud-Din, S.T., Waheed, A., Wang, W.: Exploration of Uniform Heat Flux on the Flow and Heat Transportation of Ferrofluids along a Smooth Plate: Comparative Investigation. Int. J. Biomath. 11(2), 1850048 (2018)MathSciNetCrossRef Usman, M., Hamid, M., Mohyud-Din, S.T., Waheed, A., Wang, W.: Exploration of Uniform Heat Flux on the Flow and Heat Transportation of Ferrofluids along a Smooth Plate: Comparative Investigation. Int. J. Biomath. 11(2), 1850048 (2018)MathSciNetCrossRef
16.
go back to reference Crane, L.J.: Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 21(4), 645–647 (1970)CrossRef Crane, L.J.: Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 21(4), 645–647 (1970)CrossRef
17.
go back to reference Nadeem, S., Haq, R.U.: Effect of thermal radiation for magnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J. Comput. Theor. Nanosci. 11(1), 32–40 (2014)CrossRef Nadeem, S., Haq, R.U.: Effect of thermal radiation for magnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J. Comput. Theor. Nanosci. 11(1), 32–40 (2014)CrossRef
18.
go back to reference Hayat, T., Muhammad, T., Shehzad, S.A., Alsaedi, A.: An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int. J. Therm. Sci. 111, 274–288 (2017)CrossRef Hayat, T., Muhammad, T., Shehzad, S.A., Alsaedi, A.: An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int. J. Therm. Sci. 111, 274–288 (2017)CrossRef
19.
go back to reference Hamid, M., Usman, M., Zubair, T., Haq, R.U., Wang, W.: Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach. Int. J. Heat Mass Transf. 124, 706–714 (2018)CrossRef Hamid, M., Usman, M., Zubair, T., Haq, R.U., Wang, W.: Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach. Int. J. Heat Mass Transf. 124, 706–714 (2018)CrossRef
20.
go back to reference Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)CrossRef Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)CrossRef
21.
go back to reference Noor, N.F., Haq, R.U., Nadeem, S., Hashim, I.: Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8), 2007–2022 (2015)MathSciNetCrossRef Noor, N.F., Haq, R.U., Nadeem, S., Hashim, I.: Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8), 2007–2022 (2015)MathSciNetCrossRef
22.
go back to reference Haq, R.U., Nadeem, S., Akbar, N.S., Khan, Z.H.: Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans. Nanotechnol. 14(1), 42–50 (2015)CrossRef Haq, R.U., Nadeem, S., Akbar, N.S., Khan, Z.H.: Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans. Nanotechnol. 14(1), 42–50 (2015)CrossRef
26.
go back to reference El-Dabe, N.T., Abou-Zeid, M.Y., Mohamed, M.A.: ABD-Elmoneim MM: MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel. Arch. Appl. Mech. 13, 1–1 (2020) El-Dabe, N.T., Abou-Zeid, M.Y., Mohamed, M.A.: ABD-Elmoneim MM: MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel. Arch. Appl. Mech. 13, 1–1 (2020)
27.
28.
go back to reference Abbaszadeh, M., Dehghan, M.: Investigation of the Oldroyd model as a generalized incompressible Navier–Stokes equation via the interpolating stabilized element free Galerkin technique. Appl. Numer. Math. 150, 274–294 (2020)MathSciNetCrossRef Abbaszadeh, M., Dehghan, M.: Investigation of the Oldroyd model as a generalized incompressible Navier–Stokes equation via the interpolating stabilized element free Galerkin technique. Appl. Numer. Math. 150, 274–294 (2020)MathSciNetCrossRef
29.
go back to reference Abbaszadeh, M., Dehghan, M., Khodadadian, A., Heitzinger, C.: Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher–Kolmogorov equation. Comput. Math. Appl. 80, 247–262 (2020)MathSciNetCrossRef Abbaszadeh, M., Dehghan, M., Khodadadian, A., Heitzinger, C.: Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher–Kolmogorov equation. Comput. Math. Appl. 80, 247–262 (2020)MathSciNetCrossRef
30.
go back to reference Usman, M., Hamid, M., Haq, R.U., Wang, W.: Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach. Int. J. Heat Mass Transf. 123, 888–895 (2018)CrossRef Usman, M., Hamid, M., Haq, R.U., Wang, W.: Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach. Int. J. Heat Mass Transf. 123, 888–895 (2018)CrossRef
31.
go back to reference Abbaszadeh, M., Dehghan, M.: Interior penalty discontinuous Galerkin technique for solving generalized Sobolev equation. Appl. Numer. Math. 154, 172–186 (2020)MathSciNetCrossRef Abbaszadeh, M., Dehghan, M.: Interior penalty discontinuous Galerkin technique for solving generalized Sobolev equation. Appl. Numer. Math. 154, 172–186 (2020)MathSciNetCrossRef
32.
go back to reference Khan, Z.H., Usman, M., Zubair, T., Hamid, M., Haq, R.U.: Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring–Powell nanofluid: a Galerkin approach. Commun. Theor. Phys. 72, 115703 (2020)MathSciNetCrossRef Khan, Z.H., Usman, M., Zubair, T., Hamid, M., Haq, R.U.: Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring–Powell nanofluid: a Galerkin approach. Commun. Theor. Phys. 72, 115703 (2020)MathSciNetCrossRef
34.
go back to reference Abbaszadeh, M., Dehghan, M.: Direct meshless local Petrov–Galerkin method to investigate anisotropic potential and plane elastostatic equations of anisotropic functionally graded materials problems. Eng. Anal. Bound. Elem. 118, 188–201 (2020)MathSciNetCrossRef Abbaszadeh, M., Dehghan, M.: Direct meshless local Petrov–Galerkin method to investigate anisotropic potential and plane elastostatic equations of anisotropic functionally graded materials problems. Eng. Anal. Bound. Elem. 118, 188–201 (2020)MathSciNetCrossRef
Metadata
Title
A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels
Authors
Muhammad Hamid
Muhammad Usman
Rizwan Ul Haq
Zhenfu Tian
Publication date
24-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 5/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01861-6

Other articles of this Issue 5/2021

Archive of Applied Mechanics 5/2021 Go to the issue

Premium Partners