Skip to main content
Top

2024 | OriginalPaper | Chapter

A General Solution of Black–Scholes Equations on Some Rainbow Options

Authors : Amirul Hakam, Endah R. M. Putri, Lutfi Mardianto

Published in: Applied and Computational Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study proposes a general solution of the Black–Scholes equation to determine some Rainbow options’ prices, both analytically and semi-analytically. We formulate general analytical solutions in non-dimensional terms by appropriately treating the payoff conditions. In particular, we present analytical solutions for three types of rainbow options: Better of options, Exchange options and Spread options. Furthermore, as our second contribution, we propose a semi-analytic solution for these three types of Rainbow options, leveraging the Homotopy Perturbation Method (HPM). The simulation results demonstrate the remarkable proximity of the semi-analytic solution to the analytical solution, ensuring accurate option pricing approximations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jiang, L.: Mathematical Modeling and Methods of Option Pricing. World Scientific Publishing Company (2005) Jiang, L.: Mathematical Modeling and Methods of Option Pricing. World Scientific Publishing Company (2005)
2.
go back to reference Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford (1993) Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford (1993)
3.
go back to reference Panini, R.: Option Pricing with Mellin Transforms. State University of New York at Stony Brook (2004) Panini, R.: Option Pricing with Mellin Transforms. State University of New York at Stony Brook (2004)
4.
go back to reference Jódar, L., Sevilla-Peris, P., Cortes, J., Sala, R.: A new direct method for solving the Black-Scholes equation. Appl. Math. Lett. 18(1), 29–32 (2005)MathSciNetCrossRef Jódar, L., Sevilla-Peris, P., Cortes, J., Sala, R.: A new direct method for solving the Black-Scholes equation. Appl. Math. Lett. 18(1), 29–32 (2005)MathSciNetCrossRef
5.
go back to reference Bohner, M., Zheng, Y.: On analytical solutions of the Black-Scholes equation. Appl. Math. Lett. 22(3), 309–313 (2009)MathSciNetCrossRef Bohner, M., Zheng, Y.: On analytical solutions of the Black-Scholes equation. Appl. Math. Lett. 22(3), 309–313 (2009)MathSciNetCrossRef
6.
go back to reference Khatskevich, V.: Some properties of legendre polynomials and an approximate solution of the Black-Scholes equation governing option pricing. Diff. Equ. 51(9), 1157–1164 (2015)MathSciNetCrossRef Khatskevich, V.: Some properties of legendre polynomials and an approximate solution of the Black-Scholes equation governing option pricing. Diff. Equ. 51(9), 1157–1164 (2015)MathSciNetCrossRef
7.
go back to reference Pooley, D.M., Vetzal, K.R., Forsyth, P.A.: Convergence remedies for non-smooth payoffs in option pricing. J. Comput. Finance 6(4), 25–40 (2003)CrossRef Pooley, D.M., Vetzal, K.R., Forsyth, P.A.: Convergence remedies for non-smooth payoffs in option pricing. J. Comput. Finance 6(4), 25–40 (2003)CrossRef
8.
go back to reference Jeong, D., Kim, J.: A comparison study of ADI and operator splitting methods on option pricing models. J. Comput. Appl. Math. 247, 162–171 (2013)MathSciNetCrossRef Jeong, D., Kim, J.: A comparison study of ADI and operator splitting methods on option pricing models. J. Comput. Appl. Math. 247, 162–171 (2013)MathSciNetCrossRef
9.
go back to reference Ke, Z., Goard, J., Zhu, S.P.: An appropriate approach to pricing European-style options with the Adomian decomposition method. ANZIAM J. 59(3), 349–369 (2018)MathSciNetCrossRef Ke, Z., Goard, J., Zhu, S.P.: An appropriate approach to pricing European-style options with the Adomian decomposition method. ANZIAM J. 59(3), 349–369 (2018)MathSciNetCrossRef
10.
go back to reference Putri, E.R., Mardianto, L., Hakam, A., Imron, C., Susanto, H.: Removing non-smoothness in solving Black-Scholes equation using a perturbation method. Phys. Lett. A 402, 127367 (2021)MathSciNetCrossRef Putri, E.R., Mardianto, L., Hakam, A., Imron, C., Susanto, H.: Removing non-smoothness in solving Black-Scholes equation using a perturbation method. Phys. Lett. A 402, 127367 (2021)MathSciNetCrossRef
Metadata
Title
A General Solution of Black–Scholes Equations on Some Rainbow Options
Authors
Amirul Hakam
Endah R. M. Putri
Lutfi Mardianto
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2136-8_14

Premium Partners