Skip to main content
Top
Published in: Wireless Personal Communications 1/2022

18-03-2022

A Generic Reliability Based Direct Decoding Algorithm for Turbo Codes

Authors: P. Salija, B. Yamuna, T. R. Padmanabhan, Deepak Mishra

Published in: Wireless Personal Communications | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interest for communication with short block length messages has gained much attention recently in many of the current and emerging wireless applications. Classical capacity approaching codes exhibit performance degradation with short block length codewords and hence are not suitable for applications that demand short block length communication. A novel performance enhanced reliability based direct decoding algorithm, that makes use of reliability values and encoder structure, has been proposed recently by the authors for short block length turbo codes. The proposed algorithm is a replacement for the conventional MAP based iterative turbo decoding algorithm. This is the first attempt (to the best of our knowledge) that used the reliability values directly instead of the log likelihood ratio (LLR) values that are commonly used in the conventional decoding algorithm. The proposed algorithm has shown a conspicuous performance improvement as well. Typically it has 2.45 dB coding gain at a BER of \(10^{-3}\) and channel adaptive complexity over AWGN channel with BPSK modulation for a code rate of \(\frac{1}{4}\). The conventional iterative algorithm formulation is based on a Gaussian noise model assumption. Any deviation from Gaussian assumption calls for changes in the branch metric computation since it uses the channel reliability of Gaussian noise. This modified branch metric reflects as modifications in the forward metric, backward metric and hence in LLR computation. In contrast to this, the direct decoding algorithm is a generic scheme and can be adapted for both Gaussian and different non-Gaussian distributions as well. In this paper, a generalization of this generic reliability based direct decoding algorithm without the Gaussian restriction, is presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shu, L., & Daniel, J. C. (2010). Error control coding. Pearson Education. Shu, L., & Daniel, J. C. (2010). Error control coding. Pearson Education.
3.
go back to reference Vaniya, S. N., Kumar, N. & Sacchi, C. (2016). Performance of iterative turbo coding with nonlinearly distorted OFDM signal. In IEEE annual India conference (INDICON) (pp. 1–5). Vaniya, S. N., Kumar, N. & Sacchi, C. (2016). Performance of iterative turbo coding with nonlinearly distorted OFDM signal. In IEEE annual India conference (INDICON) (pp. 1–5).
4.
go back to reference Shirvanimoghaddam, M., Mohamadi, M. S., Abbas, R., et al. (2019). Short block-length codes for ultra-reliable low latency communications. IEEE Communications Magazine, 57(2), 130–137.CrossRef Shirvanimoghaddam, M., Mohamadi, M. S., Abbas, R., et al. (2019). Short block-length codes for ultra-reliable low latency communications. IEEE Communications Magazine, 57(2), 130–137.CrossRef
5.
go back to reference Matsumine, T., & Ochiai, H. (2018). Capacity-approaching non-binary turbo codes: A hybrid design based on EXIT charts and union bounds. IEEE Access, 6, 70952–70963.CrossRef Matsumine, T., & Ochiai, H. (2018). Capacity-approaching non-binary turbo codes: A hybrid design based on EXIT charts and union bounds. IEEE Access, 6, 70952–70963.CrossRef
6.
go back to reference Liva, G., Paolini, E., Matuz, B., Scalise, S., & Chiani, M. (2013). Short turbo codes over high order fields. IEEE Transactions on Communications, 61(6), 2201–2211.CrossRef Liva, G., Paolini, E., Matuz, B., Scalise, S., & Chiani, M. (2013). Short turbo codes over high order fields. IEEE Transactions on Communications, 61(6), 2201–2211.CrossRef
7.
go back to reference Luvisotto, M., Pang, Z., & Dzung, D. (2017). Ultra high performance wireless control for critical applications: Challenges and directions. IEEE Transactions on Industrial Informatics, 13(3), 1448–1459.CrossRef Luvisotto, M., Pang, Z., & Dzung, D. (2017). Ultra high performance wireless control for critical applications: Challenges and directions. IEEE Transactions on Industrial Informatics, 13(3), 1448–1459.CrossRef
8.
go back to reference Zhan, M., Wu, J., Wen, H., & Zhang, P. (2018). A novel error correction mechanism for energy-efficient cyber-physical systems in smart building. IEEE Access, 6, 39037–39045.CrossRef Zhan, M., Wu, J., Wen, H., & Zhang, P. (2018). A novel error correction mechanism for energy-efficient cyber-physical systems in smart building. IEEE Access, 6, 39037–39045.CrossRef
9.
go back to reference Bennis, M., Debbah, M., & Poor, H. V. (2018). Ultra reliable and low-latency wireless communication: Tail, risk, and scale. Proceedings of the IEEE, 106(10), 1834–1853.CrossRef Bennis, M., Debbah, M., & Poor, H. V. (2018). Ultra reliable and low-latency wireless communication: Tail, risk, and scale. Proceedings of the IEEE, 106(10), 1834–1853.CrossRef
10.
go back to reference Madhavsingh, I., & Tulsi, P. F. (2021). Overview of the challenges and solutions for 5G channel coding schemes. Journal of Information and Telecommunication, 5(4), 460–483.CrossRef Madhavsingh, I., & Tulsi, P. F. (2021). Overview of the challenges and solutions for 5G channel coding schemes. Journal of Information and Telecommunication, 5(4), 460–483.CrossRef
13.
go back to reference Liva, G., Gaudio, L., Ninacs, T., & Jerkovits, T. (2016). Code design for short blocks: A survey. arXiv preprint. arXiv:1610.00873 [cs.IT]. Accessed 20 May 2019. Liva, G., Gaudio, L., Ninacs, T., & Jerkovits, T. (2016). Code design for short blocks: A survey. arXiv preprint. arXiv:​1610.​00873 [cs.IT]. Accessed 20 May 2019.
14.
go back to reference Durisi, G., Koch, T., & Popovski, P. (2015). Towards massive, ultra reliable, and low-latency wireless: The art of sending short packets. arXiv:1504.06526. Accessed 20 May 2019. Durisi, G., Koch, T., & Popovski, P. (2015). Towards massive, ultra reliable, and low-latency wireless: The art of sending short packets. arXiv:​1504.​06526. Accessed 20 May 2019.
15.
go back to reference Sadjadpour, H. R., Salehi, M., Sloane, N. J. A., & Nebe, G. (2002). Interleaver design for short block length turbo codes. In International conference on communications (pp. 628–632). Sadjadpour, H. R., Salehi, M., Sloane, N. J. A., & Nebe, G. (2002). Interleaver design for short block length turbo codes. In International conference on communications (pp. 628–632).
16.
go back to reference Isaka, M., Fossorier, M. P. C., & Imai, H. (2004). On the suboptimality of iterative decoding for turbo-like and LDPC codes with cycles in their graph representation. IEEE Transactions on Communications, 52(5), 845–854.CrossRef Isaka, M., Fossorier, M. P. C., & Imai, H. (2004). On the suboptimality of iterative decoding for turbo-like and LDPC codes with cycles in their graph representation. IEEE Transactions on Communications, 52(5), 845–854.CrossRef
17.
go back to reference Weithoffer, S., & Wehn, N. (2017). Enhanced decoding for high-rate LTE turbo-codes with short block length. In Proceedings of international conference on communications workshops (ICC workshops) (pp. 967–972). Weithoffer, S., & Wehn, N. (2017). Enhanced decoding for high-rate LTE turbo-codes with short block length. In Proceedings of international conference on communications workshops (ICC workshops) (pp. 967–972).
18.
go back to reference Dadi, M. I., & Marks, R. J. (1987). Detector relative efficiencies in the presence of Laplace noise. IEEE Transactions on Aerospace and Electronic Systems, 23(4), 568–582.CrossRef Dadi, M. I., & Marks, R. J. (1987). Detector relative efficiencies in the presence of Laplace noise. IEEE Transactions on Aerospace and Electronic Systems, 23(4), 568–582.CrossRef
19.
go back to reference Mertz, P. (1961). Model of impulsive noise for data transmission. IRE Transactions on Communications Systems, 9(2), 130–137.CrossRef Mertz, P. (1961). Model of impulsive noise for data transmission. IRE Transactions on Communications Systems, 9(2), 130–137.CrossRef
20.
go back to reference Palahina, E., Gamcova, M., Gladisova, I., Gamec, J., & Palahin, V. (2018). Signal detection in correlated non-gaussian noise using higher-order statistics. Circuits, Systems, and Signal Processing, 37, 1704–1723.MathSciNetCrossRef Palahina, E., Gamcova, M., Gladisova, I., Gamec, J., & Palahin, V. (2018). Signal detection in correlated non-gaussian noise using higher-order statistics. Circuits, Systems, and Signal Processing, 37, 1704–1723.MathSciNetCrossRef
21.
go back to reference Miller, J., & Thomas, J. (1972). Detectors for discrete-time signals in non-Gaussian noise. IEEE Transactions on Information Theory, 18(2), 241–250.CrossRef Miller, J., & Thomas, J. (1972). Detectors for discrete-time signals in non-Gaussian noise. IEEE Transactions on Information Theory, 18(2), 241–250.CrossRef
22.
go back to reference Jiang, Y., Kim, H., Asnani, H., Kannan, S., Oh, S., & Viswanath, P. (2019). Deep turbo: Deep turbo decoder. arXiv preprint. arXiv:1903.02295 [eess.SP]. Jiang, Y., Kim, H., Asnani, H., Kannan, S., Oh, S., & Viswanath, P. (2019). Deep turbo: Deep turbo decoder. arXiv preprint. arXiv:​1903.​02295 [eess.SP].
23.
go back to reference Shafieipour, M., Lim, H., & Chuah, T. (2011). Decoding of turbo codes in symmetric alpha-stable noise. ISRN Signal Processing, 2011, 1–7.CrossRef Shafieipour, M., Lim, H., & Chuah, T. (2011). Decoding of turbo codes in symmetric alpha-stable noise. ISRN Signal Processing, 2011, 1–7.CrossRef
24.
go back to reference Salija, P., Yamuna, B., Padmanabhan, T. R., & Mishra, D. (2019). A novel reliability based high performance decoding algorithm for short block length turbo codes. International Journal of Ad Hoc and Ubiquitous Computing (in press). Salija, P., Yamuna, B., Padmanabhan, T. R., & Mishra, D. (2019). A novel reliability based high performance decoding algorithm for short block length turbo codes. International Journal of Ad Hoc and Ubiquitous Computing (in press).
25.
go back to reference Miller, J., & Thomas, J. (1976). The detection of signals in impulsive noise modeled as a mixture process. IEEE Transactions on Communications, 24(5), 559–563.CrossRef Miller, J., & Thomas, J. (1976). The detection of signals in impulsive noise modeled as a mixture process. IEEE Transactions on Communications, 24(5), 559–563.CrossRef
26.
go back to reference Marks, R. J., Wise, G. L., Haldeman, D. G., & Whited, J. L. (1978). Detection in Laplace noise. IEEE Transactions on Aerospace and Electronic Systems, 14(6), 866–872.CrossRef Marks, R. J., Wise, G. L., Haldeman, D. G., & Whited, J. L. (1978). Detection in Laplace noise. IEEE Transactions on Aerospace and Electronic Systems, 14(6), 866–872.CrossRef
28.
go back to reference Cai, Y., Morris, J. M., Adali, T., & Menyuk, C. R. (2003). On turbo code decoder performance in optical-fiber communication systems with dominating ASE noise. Journal of Lightwave Technology, 21(3), 727–734.CrossRef Cai, Y., Morris, J. M., Adali, T., & Menyuk, C. R. (2003). On turbo code decoder performance in optical-fiber communication systems with dominating ASE noise. Journal of Lightwave Technology, 21(3), 727–734.CrossRef
29.
go back to reference Majoul, T., Raouafi, F., & Jaidane, M. (2009). Turbo decoding performance in non Gaussian noise channels. In Proceedings of sixth international multi-conference on systems, signals and devices (pp. 1–4). Majoul, T., Raouafi, F., & Jaidane, M. (2009). Turbo decoding performance in non Gaussian noise channels. In Proceedings of sixth international multi-conference on systems, signals and devices (pp. 1–4).
30.
go back to reference Chuah, T. C. (2005). Robust iterative decoding of turbo codes in heavy-tailed noise. IEE Proceedings Communications, 152(1), 29–38.CrossRef Chuah, T. C. (2005). Robust iterative decoding of turbo codes in heavy-tailed noise. IEE Proceedings Communications, 152(1), 29–38.CrossRef
31.
go back to reference Faber, T., Scholand, T., & Jung, P. (2005). On turbo codes for environments impaired by impulsive noise. In Proceedings of IEEE sixtieth vehicular technology conference (pp. 2268–2272). Faber, T., Scholand, T., & Jung, P. (2005). On turbo codes for environments impaired by impulsive noise. In Proceedings of IEEE sixtieth vehicular technology conference (pp. 2268–2272).
33.
go back to reference Ermolova, N. Y., & Tirkkonen, O. (2016). Using beta distributions for modeling distances in random finite networks. IEEE Communications Letters, 20(2), 308–311.CrossRef Ermolova, N. Y., & Tirkkonen, O. (2016). Using beta distributions for modeling distances in random finite networks. IEEE Communications Letters, 20(2), 308–311.CrossRef
34.
go back to reference Srinivasa, S., & Haenggi, M. (2010). Distance distributions in finite uniformly random networks: Theory and application. IEEE Transactions on Vehicular Technology, 59(2), 940–949.CrossRef Srinivasa, S., & Haenggi, M. (2010). Distance distributions in finite uniformly random networks: Theory and application. IEEE Transactions on Vehicular Technology, 59(2), 940–949.CrossRef
35.
go back to reference Eltoft, T., Taesu, K., & Te-Won, L. (2006). On the multivariate Laplace distribution. IEEE Signal Processing Letters, 13(5), 300–303.CrossRef Eltoft, T., Taesu, K., & Te-Won, L. (2006). On the multivariate Laplace distribution. IEEE Signal Processing Letters, 13(5), 300–303.CrossRef
36.
go back to reference Skomal, E. N. (1965). Distribution and frequency dependence of unintentionally generated manmade VHF/UHF noise in metropolitan areas. IEEE Transactions on Electromagnetic Compatibility, 7(4), 420–427.CrossRef Skomal, E. N. (1965). Distribution and frequency dependence of unintentionally generated manmade VHF/UHF noise in metropolitan areas. IEEE Transactions on Electromagnetic Compatibility, 7(4), 420–427.CrossRef
37.
go back to reference Fennick, J. H. (1969). Amplitude distributions of telephone channel noise and a model for impulse noise. The Bell System Technical Journal, 48(10), 3243–3263.CrossRef Fennick, J. H. (1969). Amplitude distributions of telephone channel noise and a model for impulse noise. The Bell System Technical Journal, 48(10), 3243–3263.CrossRef
38.
go back to reference Bowling, S. R., Khasawneh, M. T., Kaewkuekool, S., & Cho, B. (2009). A logistic approximation to the cumulative normal distribution. Journal of Industrial Engineering and Management, 2(1), 114–127.CrossRef Bowling, S. R., Khasawneh, M. T., Kaewkuekool, S., & Cho, B. (2009). A logistic approximation to the cumulative normal distribution. Journal of Industrial Engineering and Management, 2(1), 114–127.CrossRef
Metadata
Title
A Generic Reliability Based Direct Decoding Algorithm for Turbo Codes
Authors
P. Salija
B. Yamuna
T. R. Padmanabhan
Deepak Mishra
Publication date
18-03-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09577-2

Other articles of this Issue 1/2022

Wireless Personal Communications 1/2022 Go to the issue