Skip to main content
Top

2025 | OriginalPaper | Chapter

A Genetic Algorithm-Based Scheduling Method Considering Working Hours for Medical Doctors

Authors : Subaru Narahashi, Eiji Hirakawa, Akira Uchiyama, Yusuke Gotoh

Published in: Advances in Mobile Computing and Multimedia Intelligence

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the diversity of work styles in recent years, we need to solve issues such as the aging of the working-age population and the increasing responsibilities of caregiving. In particular, the medical field requires efficient and appropriate scheduling due to the lengthening of working hours caused by the shortage of human resources. Many researchers have addressed the Nurse Scheduling Problem (NSP). However, the scheduling problem for medical doctors is more difficult than NSP because they have more varied work arrangements and more stringent constraints than those of the NSP. In this paper, we propose a method to automatically generate work scheduling that considers the work hours of medical doctors. The proposed method classifies medical doctors into four types of work arrangements (morning shift, afternoon shift, semi-night shift, and night shift) and constructs rules to generate constraints for each work arrangement. In addition, the proposed method uses a genetic algorithm to generate the optimal work schedules for multiple medical doctors considering computer resources in heuristic search. The evaluation results showed that the proposed method can generate work schedules that satisfy as many contraints as possible.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ikegami, A., Niwa, A.: A subproblem-centric model and approach to the nurse scheduling problem. Math. Program. 97, 517–541 (2003)MathSciNetCrossRef Ikegami, A., Niwa, A.: A subproblem-centric model and approach to the nurse scheduling problem. Math. Program. 97, 517–541 (2003)MathSciNetCrossRef
5.
go back to reference Lin, Y.-K., Yen, C.-H.: Genetic algorithm for solving the no-wait three-stage surgery scheduling problem. Healthcare 11(5), 1–14 (2023)CrossRef Lin, Y.-K., Yen, C.-H.: Genetic algorithm for solving the no-wait three-stage surgery scheduling problem. Healthcare 11(5), 1–14 (2023)CrossRef
7.
go back to reference Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co. (1989) Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co. (1989)
Metadata
Title
A Genetic Algorithm-Based Scheduling Method Considering Working Hours for Medical Doctors
Authors
Subaru Narahashi
Eiji Hirakawa
Akira Uchiyama
Yusuke Gotoh
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78049-3_11

Premium Partner