Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-11-2019 | Original Article | Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020

A global and local feature weighted method for ancient murals inpainting

Journal:
International Journal of Machine Learning and Cybernetics > Issue 6/2020
Authors:
Huan Wang, Qingquan Li, Sen Jia
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Ancient murals have been haunted by various problems such as color fading, surface layer turning crisp and even large-area peeling off. Virtually inpainting technologies are widely used to restore these damages. In general, when structure information are blurred or completely missing within a large region, the image inpainting would be more thorny. In this paper, we study mural image inpainting by incorporating structure information collected from the limners guidance or the line drawings, and propose a global and local feature weighted method based on structure guidance to repair the damaged murals of Yulin Grottoes and Mogao Grottoes, Gansu. Unlike traditional methods, a novel sparse representation model with elastic net regularization based on similarity-preserving overcomplete dictionary is formulated to enhance the global feature consistency, and then an estimated method of neighborhood similarity is presented to guarantee local feature consistency, finally, we apply a global feature patch and local feature patch weighted method to obtain the target patch. Experimental results on damaged murals demonstrate the proposed method outperforms state-of-the-art inpainting methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020 Go to the issue