Skip to main content
Top

2017 | OriginalPaper | Chapter

6. A Graphene Foam Electrode with High Sulfur Loading for Flexible and High-Energy Li–S Batteries

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flexible energy storage devices are becoming increasingly important for future applications but are limited by the lack of suitable lightweight electrode materials with robust electrochemical performance under cyclic mechanical strain. Here, we proposed an effective strategy to obtain flexible Li–S battery electrodes with high energy density, high power density and long cyclic life by adopting graphene foam-based electrodes. Graphene foam can provide a highly electrically conductive network, robust mechanical support and sufficient space for a high sulfur loading. The sulfur loading in graphene foam-based electrodes can be tuned from 3.3 to 10.1 mg cm−2. The electrode with 10.1 mg cm−2 sulfur loading could deliver an extremely high areal capacity of 13.4 mAh cm−2, much higher than the commonly reported Li–S electrodes and commercially used lithium cobalt oxide cathode with a value of ~3–4 mAh cm−2. Meanwhile, the high sulfur-loaded electrodes retain a high rate performance with reversible capacities higher than 450 mAh g−2 under a large current density of 6 A g−2 and preserve stable cycling performance with ~0.07% capacity decay per cycle over 1000 cycles. These impressive results indicate that such electrodes could enable high performance, fast-charging and flexible Li–S batteries that show stable performance over extended charge/discharge cycling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46(5):1135–1143CrossRef Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46(5):1135–1143CrossRef
2.
go back to reference Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef
3.
go back to reference Zhang SS, Tran DT (2012) A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density. J Power Sources 211:169–172CrossRef Zhang SS, Tran DT (2012) A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density. J Power Sources 211:169–172CrossRef
4.
go back to reference Hagen M et al (2013) Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. J Power Sources 224:260–268CrossRef Hagen M et al (2013) Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. J Power Sources 224:260–268CrossRef
5.
go back to reference Gao J, Abruña HD (2014) Key parameters governing the energy density of rechargeable Li/S batteries. J Phys Chem Lett 5(5):882–885CrossRef Gao J, Abruña HD (2014) Key parameters governing the energy density of rechargeable Li/S batteries. J Phys Chem Lett 5(5):882–885CrossRef
6.
go back to reference Jeong G, Kim Y-U, Kim H, Kim Y-J, Sohn H-J (2011) Prospective materials and applications for Li secondary batteries. Energy Environ Sci 4(6):1986–2002CrossRef Jeong G, Kim Y-U, Kim H, Kim Y-J, Sohn H-J (2011) Prospective materials and applications for Li secondary batteries. Energy Environ Sci 4(6):1986–2002CrossRef
7.
go back to reference Lee S-Y et al (2013) Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium–ion batteries. Energy Environ Sci 6:2414–2423 Lee S-Y et al (2013) Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium–ion batteries. Energy Environ Sci 6:2414–2423
8.
go back to reference Gao XP, Yang HX (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3(2):174–189CrossRef Gao XP, Yang HX (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3(2):174–189CrossRef
9.
go back to reference Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338CrossRef Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338CrossRef
10.
go back to reference Fongy C, Gaillot A-C, Jouanneau S, Guyomard D, Lestriez B (2010) Ionic vs electronic power limitations and analysis of the fraction of wired grains in LiFePO4 composite electrodes. J Electrochem Soc 157(7):A885–A891CrossRef Fongy C, Gaillot A-C, Jouanneau S, Guyomard D, Lestriez B (2010) Ionic vs electronic power limitations and analysis of the fraction of wired grains in LiFePO4 composite electrodes. J Electrochem Soc 157(7):A885–A891CrossRef
11.
go back to reference Hu L et al (2011) Lithium-Ion textile batteries with large areal mass loading. Adv Energy Mater 1(6):1012–1017CrossRef Hu L et al (2011) Lithium-Ion textile batteries with large areal mass loading. Adv Energy Mater 1(6):1012–1017CrossRef
12.
go back to reference Mazouzi D et al (2014) Very high surface capacity observed using Si negative electrodes embedded in copper foam as 3D current collectors. Adv Energy Mater 4(8):1301718CrossRef Mazouzi D et al (2014) Very high surface capacity observed using Si negative electrodes embedded in copper foam as 3D current collectors. Adv Energy Mater 4(8):1301718CrossRef
13.
go back to reference Pikul JH, Gang Zhang H, Cho J, Braun PV, King WP (2013) High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun 4:1732CrossRef Pikul JH, Gang Zhang H, Cho J, Braun PV, King WP (2013) High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun 4:1732CrossRef
14.
go back to reference Wang D-W et al (2013) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1(33):9382–9394CrossRef Wang D-W et al (2013) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1(33):9382–9394CrossRef
15.
go back to reference Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787CrossRef Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787CrossRef
16.
go back to reference Chen ZP et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428CrossRef Chen ZP et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428CrossRef
17.
go back to reference Chen Z, Xu C, Ma C, Ren W, Cheng H-M (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300CrossRef Chen Z, Xu C, Ma C, Ren W, Cheng H-M (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300CrossRef
18.
go back to reference Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376CrossRef Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376CrossRef
19.
go back to reference Jia XL et al (2012) Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium–ion batteries. ACS Nano 6(11):9911–9919CrossRef Jia XL et al (2012) Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium–ion batteries. ACS Nano 6(11):9911–9919CrossRef
20.
go back to reference Zhou GM et al (2012) A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci 5(10):8901–8906CrossRef Zhou GM et al (2012) A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci 5(10):8901–8906CrossRef
21.
go back to reference Wang K et al (2013) Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv Funct Mater 23(7):846–853CrossRef Wang K et al (2013) Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv Funct Mater 23(7):846–853CrossRef
22.
go back to reference Luo S et al (2012) Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv Mater 24(17):2294–2298CrossRef Luo S et al (2012) Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv Mater 24(17):2294–2298CrossRef
23.
go back to reference Zhou GM et al (2013) Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7(6):5367–5375CrossRef Zhou GM et al (2013) Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7(6):5367–5375CrossRef
24.
go back to reference Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506CrossRef Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506CrossRef
25.
go back to reference Lu S, Chen Y, Wu X, Wang Z, Li Y (2014) Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci Rep 4:4629 Lu S, Chen Y, Wu X, Wang Z, Li Y (2014) Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci Rep 4:4629
26.
go back to reference Miao L, Wang W, Yuan K, Yang Y, Wang A (2014) A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material. Chem Commun 50:13231–13234CrossRef Miao L, Wang W, Yuan K, Yang Y, Wang A (2014) A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material. Chem Commun 50:13231–13234CrossRef
27.
go back to reference Zhou GM et al (2015) A flexible sulfur–graphene–polypropylene separator integrated electrode for advanced Li–S batteries. Adv Mater 27(4):641–647CrossRef Zhou GM et al (2015) A flexible sulfur–graphene–polypropylene separator integrated electrode for advanced Li–S batteries. Adv Mater 27(4):641–647CrossRef
28.
go back to reference Kim J-S, Hwang TH, Kim BG, Min J, Choi JW (2014) A lithium–sulfur battery with a high areal energy density. Adv Funct Mater 24(34):5359–5367CrossRef Kim J-S, Hwang TH, Kim BG, Min J, Choi JW (2014) A lithium–sulfur battery with a high areal energy density. Adv Funct Mater 24(34):5359–5367CrossRef
29.
go back to reference Cheng X-B et al (2014) Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium–sulfur batteries. J Power Sources 261:264–270CrossRef Cheng X-B et al (2014) Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium–sulfur batteries. J Power Sources 261:264–270CrossRef
30.
go back to reference Seh Z et al (2013) Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331CrossRef Seh Z et al (2013) Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331CrossRef
31.
go back to reference Zhou GM et al (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv Mater 26(4):625–631CrossRef Zhou GM et al (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv Mater 26(4):625–631CrossRef
32.
go back to reference Xa Chen et al (2014) Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium–sulfur batteries. Adv Energy Mater 4(13):1301988CrossRef Xa Chen et al (2014) Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium–sulfur batteries. Adv Energy Mater 4(13):1301988CrossRef
33.
go back to reference Moon S et al (2013) Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv Mater 25(45):6547–6553CrossRef Moon S et al (2013) Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv Mater 25(45):6547–6553CrossRef
34.
go back to reference Zhao M-Q et al (2014) Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat Commun 5:3410 Zhao M-Q et al (2014) Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat Commun 5:3410
35.
go back to reference Fu Y, Manthiram A (2012) Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium–sulfur batteries. J Phys Chem C 116(16):8910–8915CrossRef Fu Y, Manthiram A (2012) Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium–sulfur batteries. J Phys Chem C 116(16):8910–8915CrossRef
36.
go back to reference Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruña HD (2013) Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J Am Chem Soc 135(44):16736–16743CrossRef Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruña HD (2013) Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J Am Chem Soc 135(44):16736–16743CrossRef
37.
go back to reference Song J et al (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv Funct Mater 24(9):1243–1250CrossRef Song J et al (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv Funct Mater 24(9):1243–1250CrossRef
38.
go back to reference Jin J et al (2013) Flexible self-supporting graphene-sulfur paper for lithium sulfur batteries. RSC Adv 3(8):2558–2560CrossRef Jin J et al (2013) Flexible self-supporting graphene-sulfur paper for lithium sulfur batteries. RSC Adv 3(8):2558–2560CrossRef
39.
go back to reference Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater 23(47):5641–5644CrossRef Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater 23(47):5641–5644CrossRef
40.
go back to reference Su YS, Fu YZ, Manthiram A (2012) Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys Chem Chem Phys 14(42):14495–14499CrossRef Su YS, Fu YZ, Manthiram A (2012) Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys Chem Chem Phys 14(42):14495–14499CrossRef
41.
go back to reference Li N, Chen ZP, Ren WC, Li F, Cheng HM (2012) Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci USA 109(43):17360–17365CrossRef Li N, Chen ZP, Ren WC, Li F, Cheng HM (2012) Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci USA 109(43):17360–17365CrossRef
Metadata
Title
A Graphene Foam Electrode with High Sulfur Loading for Flexible and High-Energy Li–S Batteries
Author
Guangmin Zhou
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3406-0_6