Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

A Grey Box Model Approach for the Prediction of Tire Energy Loss

Authors: Michael Burger, Stefan Steidel

Published in: Advances in Dynamics of Vehicles on Roads and Tracks

Publisher: Springer International Publishing

share
SHARE

Abstract

The maintenance costs of vehicles, and particularly commercial vehicles, are influenced by rolling resistance and tread wear of tires. In this context, the tire label is established in Europe for indicating the energy efficiency of a tire, although the respective test procedures do not reflect realistic application scenarios in daily use. Therefore, we propose a grey box model approach for predicting rolling resistance and tread wear of tires, i.e., tire energy losses, as a function of route, vehicle, driver and traffic parameters by means of physical models for the vehicle and tire dynamics in combination with machine learning techniques. This enables the prediction of tire energy loss for different customer groups in arbitrary regions around the world under realistic conditions.
Literature
1.
go back to reference Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, New York (2012) MATH Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, New York (2012) MATH
2.
go back to reference Bishop, C.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2006) Bishop, C.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2006)
3.
go back to reference Gallrein, A., Bäcker, M., Gizatullin, A.: Structural MBD tire models: closing the gap to structural analysis - history and future of parameter identification. SAE Technical Paper 2013-01-0630 (2013) Gallrein, A., Bäcker, M., Gizatullin, A.: Structural MBD tire models: closing the gap to structural analysis - history and future of parameter identification. SAE Technical Paper 2013-01-0630 (2013)
4.
go back to reference Calabrese, F., Bäcker, M., Galbally, C., Gallrein, A.: A detailed thermo-mechanical tire model for advanced handling applications. SAE Int. J. Passeng. Cars – Mech. Syst. 8(2), 501–511 (2015) CrossRef Calabrese, F., Bäcker, M., Galbally, C., Gallrein, A.: A detailed thermo-mechanical tire model for advanced handling applications. SAE Int. J. Passeng. Cars – Mech. Syst. 8(2), 501–511 (2015) CrossRef
5.
go back to reference Halfmann, T., Steidel, S., Gallrein, A., Dreßler, K., Pasalkar, V.: Extrapolation of rolling resistance for truck tires from specific load cases to vehicle usage in the field. In: Berns, K. et al. (eds.): Commercial Vehicle Technology 2016, Shaker, pp. 470–478 (2016) Halfmann, T., Steidel, S., Gallrein, A., Dreßler, K., Pasalkar, V.: Extrapolation of rolling resistance for truck tires from specific load cases to vehicle usage in the field. In: Berns, K. et al. (eds.): Commercial Vehicle Technology 2016, Shaker, pp. 470–478 (2016)
6.
go back to reference Murphy, K.: Machine Learning. The MIT Press, Cambridge (2012) MATH Murphy, K.: Machine Learning. The MIT Press, Cambridge (2012) MATH
7.
go back to reference Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011) MathSciNetMATH Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011) MathSciNetMATH
8.
go back to reference Steidel, S., Halfmann, T., Bäcker, M., Gallrein, A.: Prediction of rolling resistance and tread wear of tires in realistic commercial vehicle application scenarios. SAE Technical Paper 2016-01-8027 (2016) Steidel, S., Halfmann, T., Bäcker, M., Gallrein, A.: Prediction of rolling resistance and tread wear of tires in realistic commercial vehicle application scenarios. SAE Technical Paper 2016-01-8027 (2016)
Metadata
Title
A Grey Box Model Approach for the Prediction of Tire Energy Loss
Authors
Michael Burger
Stefan Steidel
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-38077-9_216

Premium Partner