Skip to main content
Top

2023 | OriginalPaper | Chapter

5. A Hesitant Multiplicative Best-Worst Method for Multiple Criteria Decision-Making

Authors : Yejun Xu, Dayong Wang

Published in: Advances in Best-Worst Method

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The classical Best-Worst Method (BWM) and its expansion form in the multiple criteria decision-making problem under different backgrounds are widely used to calculate the weights of criteria. The traditional BWM uses the accurate value based on Saaty’s scale to describe a decision maker (DM)’s preferences. However, a DM may be unsure about his preference and may give several possible values to express his preferences. In this situation, the hesitant multiplicative elements may be truly reflected the DM’s preference relation. This paper incorporates the BWM, the hesitant multiplicative preference relations (HMPR), and proposes HMBWM. Three different models are proposed to determine the weights from hesitant multiplicative best-to-others (HMBO) and hesitant multiplicative others-to-worst (HMOW) vectors. Finally, a case study of choosing commercial endowment insurance products is constructed to illustrate the practicality and correctness of the proposed model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rezaei, J. (2021). Anchoring bias in eliciting attribute weights and values in multi-attribute decision-making. Journal of Decision Systems, 30(1), 72–96.CrossRef Rezaei, J. (2021). Anchoring bias in eliciting attribute weights and values in multi-attribute decision-making. Journal of Decision Systems, 30(1), 72–96.CrossRef
2.
go back to reference Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57.CrossRef Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57.CrossRef
3.
go back to reference Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill. Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.
4.
go back to reference Ren, J. Z. (2018). Selection of sustainable prime mover for combined cooling, heat, and power technologies under uncertainties: An interval multicriteria decision-making approach. International Journal of Energy Research, 42(8), 2655–2669.CrossRef Ren, J. Z. (2018). Selection of sustainable prime mover for combined cooling, heat, and power technologies under uncertainties: An interval multicriteria decision-making approach. International Journal of Energy Research, 42(8), 2655–2669.CrossRef
5.
go back to reference Guo, S., & Zhao, H. R. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems, 121, 23–31.CrossRef Guo, S., & Zhao, H. R. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems, 121, 23–31.CrossRef
6.
go back to reference Mou, Q., Xu, Z. S., & Liao, H. C. (2016). An intuitionistic fuzzy multiplicative best-worst method for multi-criteria group decision making. Information Sciences, 374, 224–239.CrossRef Mou, Q., Xu, Z. S., & Liao, H. C. (2016). An intuitionistic fuzzy multiplicative best-worst method for multi-criteria group decision making. Information Sciences, 374, 224–239.CrossRef
7.
go back to reference Mou, Q., Xu, Z. S., & Liao, H. C. (2017). A graph based group decision making approach with intuitionistic fuzzy preference relations. Computers & Industrial Engineering, 110, 138–150.CrossRef Mou, Q., Xu, Z. S., & Liao, H. C. (2017). A graph based group decision making approach with intuitionistic fuzzy preference relations. Computers & Industrial Engineering, 110, 138–150.CrossRef
8.
go back to reference Aboutorab, H., et al. (2018). ZBWM: The Z-number extension of Best Worst Method and its application for supplier development. Expert Systems with Applications, 107, 115–125.CrossRef Aboutorab, H., et al. (2018). ZBWM: The Z-number extension of Best Worst Method and its application for supplier development. Expert Systems with Applications, 107, 115–125.CrossRef
9.
go back to reference Pamučar, D., Petrović, I., & Ćirović, G. (2018). Modification of the Best-Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers. Expert Systems with Applications, 91, 89–106.CrossRef Pamučar, D., Petrović, I., & Ćirović, G. (2018). Modification of the Best-Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers. Expert Systems with Applications, 91, 89–106.CrossRef
10.
go back to reference Mi, X. M., & Liao, H. C. (2019). An integrated approach to multiple criteria decision making based on the average solution and normalized weights of criteria deduced by the hesitant fuzzy best worst method. Computers & Industrial Engineering, 133, 83–94.CrossRef Mi, X. M., & Liao, H. C. (2019). An integrated approach to multiple criteria decision making based on the average solution and normalized weights of criteria deduced by the hesitant fuzzy best worst method. Computers & Industrial Engineering, 133, 83–94.CrossRef
11.
go back to reference Xu, Y. J., et al. (2021). Fuzzy best-worst method and its application in initial water rights allocation. Applied Soft Computing, 101, 107007.CrossRef Xu, Y. J., et al. (2021). Fuzzy best-worst method and its application in initial water rights allocation. Applied Soft Computing, 101, 107007.CrossRef
12.
go back to reference Liang, F. Q., et al. (2021). Belief-based best worst method. International Journal of Information Technology & Decision Making, 20, 287–320.CrossRef Liang, F. Q., et al. (2021). Belief-based best worst method. International Journal of Information Technology & Decision Making, 20, 287–320.CrossRef
13.
go back to reference Rezaei, J., Wang, J., & Tavasszy, L. (2015). Linking supplier development to supplier segmentation using Best Worst Method. Expert Systems with Applications, 42(23), 9152–9164.CrossRef Rezaei, J., Wang, J., & Tavasszy, L. (2015). Linking supplier development to supplier segmentation using Best Worst Method. Expert Systems with Applications, 42(23), 9152–9164.CrossRef
14.
go back to reference Omrani, H., Alizadeh, A., & Amini, M. (2020). A new approach based on BWM and Multimoora methods for calculating semi-human development index: An application for provinces of Iran. Socio-Economic Planning Sciences, 70, 100689.CrossRef Omrani, H., Alizadeh, A., & Amini, M. (2020). A new approach based on BWM and Multimoora methods for calculating semi-human development index: An application for provinces of Iran. Socio-Economic Planning Sciences, 70, 100689.CrossRef
15.
go back to reference Rezaei, J., et al. (2018). Quality assessment of airline baggage handling systems using SERVQUAL and BWM. Tourism Management, 66, 85–93.CrossRef Rezaei, J., et al. (2018). Quality assessment of airline baggage handling systems using SERVQUAL and BWM. Tourism Management, 66, 85–93.CrossRef
16.
go back to reference Gupta, H. (2018). Assessing organizations performance on the basis of GHRM practices using BWM and Fuzzy TOPSIS. Journal of Environmental Management, 226, 201–216.CrossRef Gupta, H. (2018). Assessing organizations performance on the basis of GHRM practices using BWM and Fuzzy TOPSIS. Journal of Environmental Management, 226, 201–216.CrossRef
17.
go back to reference Xia, M. M., & Xu, Z. S. (2013). Managing hesitant information in GDM problems under fuzzy and multiplicative preference relations. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21, 865–897.CrossRef Xia, M. M., & Xu, Z. S. (2013). Managing hesitant information in GDM problems under fuzzy and multiplicative preference relations. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21, 865–897.CrossRef
18.
19.
go back to reference Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529–539. Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529–539.
20.
go back to reference Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130.CrossRef Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130.CrossRef
21.
go back to reference Zhu, B., Xu, Z. S., & Xu, J. P. (2014). Deriving a ranking from hesitant fuzzy preference relations under group decision making. IEEE Transactions on Cybernetics, 44(8), 1328–1337.CrossRef Zhu, B., Xu, Z. S., & Xu, J. P. (2014). Deriving a ranking from hesitant fuzzy preference relations under group decision making. IEEE Transactions on Cybernetics, 44(8), 1328–1337.CrossRef
22.
go back to reference Xu, Z. S., & Xia, M. M. (2011). Distance and similarity measures for hesitant fuzzy sets. Information Sciences, 181, 2128–2138.CrossRef Xu, Z. S., & Xia, M. M. (2011). Distance and similarity measures for hesitant fuzzy sets. Information Sciences, 181, 2128–2138.CrossRef
23.
go back to reference Xu, Y. J., & Cabrerizo, F. J. (2017). Herrera-Viedma: A consensus model for hesitant fuzzy preference relations and itsapplication in water allocation management. Applied Soft Computing, 58, 265–284.CrossRef Xu, Y. J., & Cabrerizo, F. J. (2017). Herrera-Viedma: A consensus model for hesitant fuzzy preference relations and itsapplication in water allocation management. Applied Soft Computing, 58, 265–284.CrossRef
24.
go back to reference Liang, F. Q., Brunelli, M., & Rezaei, J. (2022). Best-worst tradeoff method. Information Sciences, 610, 957–976.CrossRef Liang, F. Q., Brunelli, M., & Rezaei, J. (2022). Best-worst tradeoff method. Information Sciences, 610, 957–976.CrossRef
25.
go back to reference Liang, F. Q., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175.CrossRef Liang, F. Q., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175.CrossRef
Metadata
Title
A Hesitant Multiplicative Best-Worst Method for Multiple Criteria Decision-Making
Authors
Yejun Xu
Dayong Wang
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-40328-6_5

Premium Partner