Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

29-06-2018 | Original Article | Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019

A hierarchical clustering algorithm based on noise removal

Journal:
International Journal of Machine Learning and Cybernetics > Issue 7/2019
Authors:
Dongdong Cheng, Qingsheng Zhu, Jinlong Huang, Quanwang Wu, Lijun Yang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Noise is irrelevant or meaningless data and hinders most types of data analysis. The existing clustering algorithms seldom take the noise points into consideration and cannot detect arbitrary-shaped clusters. This paper presents a Hierarchical Clustering algorithm Based on Noise Removal (HCBNR). It is robust against noise points and good at discovering clusters with arbitrary shapes. In this work, natural neighbor-based density is applied to remove noise points in a data set firstly. Then we construct a saturated neighbor graph on the rest points, and a novel modularity-based graph partitioning algorithm is used to divide the graph into small clusters. Finally, the small clusters are repeatedly merged according to a novel similarity metric between clusters until the desired cluster number is obtained. The experimental results on synthetic data sets and real data sets show that our method can accurately identify noise points and obtain better clustering results than existing clustering algorithms when discovering arbitrary-shaped clusters.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Go to the issue