Skip to main content
Top
Published in: Journal of Scientific Computing 1/2019

02-03-2019

A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions

Authors: Hengfei Ding, Changpin Li

Published in: Journal of Scientific Computing | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel second-order numerical approximation for the Riemann–Liouville tempered fractional derivative, called the tempered fractional-compact difference formula is derived by using the tempered Grünwald difference operator and its asymptotic expansion. Using the relationship between Riemann–Liouville and the Caputo tempered fractional derivatives, then the constructed approximation formula is applied to deal with the time-Caputo-tempered partial differential equation in time, while the spatial Riesz derivative are discretized by the fourth-order compact numerical differential formulas. By using the energy method, it is proved that the proposed algorithm to be unconditionally stable and convergent with order \({\mathcal {O}}\left( \tau ^2+h_1^4+h_2^4\right) \), where \(\tau \) is the temporal stepsize and \(h_1,h_2\) are the spatial stepsizes respectively. Finally, some numerical examples are performed to testify the effectiveness of the obtained algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)MathSciNetCrossRefMATH Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)MathSciNetCrossRefMATH
3.
go back to reference Bu, W.P., Tang, Y.F., Wu, Y.C., Yang, J.Y.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)MathSciNetCrossRefMATH Bu, W.P., Tang, Y.F., Wu, Y.C., Yang, J.Y.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)MathSciNetCrossRefMATH
4.
go back to reference Benson, D., Wheatcraft, S., Meerschaert, M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1413 (2000)CrossRef Benson, D., Wheatcraft, S., Meerschaert, M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1413 (2000)CrossRef
5.
go back to reference Çelik, C., Duman, M.: Finite element method for a symmetric tempered fractional diffusion equation. Appl. Numer. Math. 120, 270–286 (2017)MathSciNetCrossRefMATH Çelik, C., Duman, M.: Finite element method for a symmetric tempered fractional diffusion equation. Appl. Numer. Math. 120, 270–286 (2017)MathSciNetCrossRefMATH
6.
go back to reference Chen, A., Li, C.P.: A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions. Int. J. Comput. Math. 93, 889–914 (2016)MathSciNetCrossRefMATH Chen, A., Li, C.P.: A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions. Int. J. Comput. Math. 93, 889–914 (2016)MathSciNetCrossRefMATH
7.
go back to reference Dehghan, M., Abbaszadeh, M.: A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput. Math. Appl. 75, 2903–2914 (2018)MathSciNetCrossRef Dehghan, M., Abbaszadeh, M.: A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput. Math. Appl. 75, 2903–2914 (2018)MathSciNetCrossRef
8.
go back to reference Deng, W., Chen, M., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)MathSciNetCrossRefMATH Deng, W., Chen, M., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)MathSciNetCrossRefMATH
9.
go back to reference Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)MathSciNetCrossRefMATH Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)MathSciNetCrossRefMATH
10.
go back to reference Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, 19–55 (2016)MathSciNetCrossRefMATH Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, 19–55 (2016)MathSciNetCrossRefMATH
11.
go back to reference Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)MathSciNetCrossRefMATH Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)MathSciNetCrossRefMATH
12.
go back to reference Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (V). Numer. Methods Partial Differ. Equ. 33, 1754–1794 (2017)MathSciNetCrossRefMATH Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (V). Numer. Methods Partial Differ. Equ. 33, 1754–1794 (2017)MathSciNetCrossRefMATH
13.
go back to reference Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH
14.
go back to reference Hao, Z., Cao, W., Lin, G.: A second-order difference scheme for the time fractional substantial diffusion equation. J. Comput. Appl. Math. 313, 54–69 (2017)MathSciNetCrossRefMATH Hao, Z., Cao, W., Lin, G.: A second-order difference scheme for the time fractional substantial diffusion equation. J. Comput. Appl. Math. 313, 54–69 (2017)MathSciNetCrossRefMATH
15.
go back to reference Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH
16.
go back to reference Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM. J. Numer. Anal. 52, 2272–2294 (2014)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM. J. Numer. Anal. 52, 2272–2294 (2014)MathSciNetCrossRefMATH
17.
go back to reference Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)MathSciNetCrossRefMATH Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)MathSciNetCrossRefMATH
18.
19.
go back to reference Kirchner, J., Feng, X., Neal, C.: Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524–526 (2000)CrossRef Kirchner, J., Feng, X., Neal, C.: Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524–526 (2000)CrossRef
20.
go back to reference Karaa, S., Mustapha, K., Pani, A.K.: Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 37, 945–964 (2017)MathSciNetMATH Karaa, S., Mustapha, K., Pani, A.K.: Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 37, 945–964 (2017)MathSciNetMATH
21.
go back to reference Laub, A.J.: Matrix Analysis for Scientists and Engineers. Society for Industrial and Applied Mathematics, Philadelphia (2005)CrossRefMATH Laub, A.J.: Matrix Analysis for Scientists and Engineers. Society for Industrial and Applied Mathematics, Philadelphia (2005)CrossRefMATH
22.
go back to reference Li, C., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95, 1048–1099 (2018)MathSciNetCrossRef Li, C., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95, 1048–1099 (2018)MathSciNetCrossRef
23.
24.
go back to reference Liu, Y., Du, Y.W., Li, H., Wang, J.F.: A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dyn. 85, 2535–2548 (2016)MathSciNetCrossRefMATH Liu, Y., Du, Y.W., Li, H., Wang, J.F.: A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dyn. 85, 2535–2548 (2016)MathSciNetCrossRefMATH
25.
go back to reference Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM. J. Numer. Anal. 54, 1763–1784 (2016)MathSciNetCrossRefMATH Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM. J. Numer. Anal. 54, 1763–1784 (2016)MathSciNetCrossRefMATH
26.
go back to reference Liu, F., Zhuang, P., Liu, Q.: Numerical Methods of Fractional Partial Differential Equations and Applications. Science Press, Beijing (2015) Liu, F., Zhuang, P., Liu, Q.: Numerical Methods of Fractional Partial Differential Equations and Applications. Science Press, Beijing (2015)
27.
go back to reference Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, A3067–A3088 (2017)CrossRefMATH Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, A3067–A3088 (2017)CrossRefMATH
28.
go back to reference Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRefMATH Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRefMATH
29.
go back to reference Li, Z., Yan, Y., Ford, N.J.: Error estimates of a high order numerical method for solving linear fractional differential equations. Appl. Numer. Math. 114, 201–220 (2017)MathSciNetCrossRefMATH Li, Z., Yan, Y., Ford, N.J.: Error estimates of a high order numerical method for solving linear fractional differential equations. Appl. Numer. Math. 114, 201–220 (2017)MathSciNetCrossRefMATH
30.
go back to reference Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC Press, Boca Raton (2015)CrossRefMATH Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC Press, Boca Raton (2015)CrossRefMATH
31.
go back to reference Magin, R.: Fractional Calculus in Bioengneering. Begell House Publishers, Danbury (2006) Magin, R.: Fractional Calculus in Bioengneering. Begell House Publishers, Danbury (2006)
32.
go back to reference Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
33.
go back to reference Moghaddam, B.P., Machado, J.A.T., Babaei, A.: A computationally efficient method for tempered fractional differential equations with application. Comput. Appl. Math. 37(3), 3657–3671 (2017)MathSciNetCrossRefMATH Moghaddam, B.P., Machado, J.A.T., Babaei, A.: A computationally efficient method for tempered fractional differential equations with application. Comput. Appl. Math. 37(3), 3657–3671 (2017)MathSciNetCrossRefMATH
34.
go back to reference Metzler, R., Nonnenmacher, T.F.: Space-and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem. Phys. 284, 67–90 (2002)CrossRef Metzler, R., Nonnenmacher, T.F.: Space-and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem. Phys. 284, 67–90 (2002)CrossRef
35.
go back to reference Morgado, M.L., Rebelo, M.: Well-posedness and numerical approximation of tempered fractional terminal value problems. Fract. Calc. Appl. Anal. 20, 1239–1262 (2017)MathSciNetCrossRefMATH Morgado, M.L., Rebelo, M.: Well-posedness and numerical approximation of tempered fractional terminal value problems. Fract. Calc. Appl. Anal. 20, 1239–1262 (2017)MathSciNetCrossRefMATH
36.
go back to reference Mustapha, K., Schötzau, D.: Well-posedness of \(hp\)-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)MathSciNetCrossRefMATH Mustapha, K., Schötzau, D.: Well-posedness of \(hp\)-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)MathSciNetCrossRefMATH
37.
go back to reference Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, Article ID 48391, 12 pages (2006) Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, Article ID 48391, 12 pages (2006)
38.
go back to reference Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH
39.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1998)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1998)MATH
40.
go back to reference Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica 314, 749–755 (2002)CrossRefMATH Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica 314, 749–755 (2002)CrossRefMATH
41.
go back to reference Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35, 698–721 (2015)MathSciNetCrossRefMATH Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35, 698–721 (2015)MathSciNetCrossRefMATH
43.
go back to reference Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH
44.
go back to reference Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetCrossRefMATH Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetCrossRefMATH
45.
go back to reference Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)MathSciNetCrossRefMATH Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)MathSciNetCrossRefMATH
46.
go back to reference Wang, Y.M.: A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. BIT Numer. Math. 55, 1187–1217 (2015)MathSciNetCrossRefMATH Wang, Y.M.: A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. BIT Numer. Math. 55, 1187–1217 (2015)MathSciNetCrossRefMATH
47.
go back to reference Wang, H., Yang, D.P., Zhu, S.F.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM. J. Numer. Anal. 52, 1292–1310 (2014)MathSciNetCrossRefMATH Wang, H., Yang, D.P., Zhu, S.F.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM. J. Numer. Anal. 52, 1292–1310 (2014)MathSciNetCrossRefMATH
48.
go back to reference Yu, Y.Y., Deng, W.H., Wu, Y.J.: Fourth order quasi-compact difference schemes for (tempered) space fractional diffusion equations. Commun. Math. Sci. 15, 1183–1209 (2017)MathSciNetCrossRefMATH Yu, Y.Y., Deng, W.H., Wu, Y.J.: Fourth order quasi-compact difference schemes for (tempered) space fractional diffusion equations. Commun. Math. Sci. 15, 1183–1209 (2017)MathSciNetCrossRefMATH
49.
go back to reference Yu, Y.Y., Deng, W.H., Wu, Y.J.: Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations. Appl. Numer. Math. 112, 126–145 (2017)MathSciNetCrossRefMATH Yu, Y.Y., Deng, W.H., Wu, Y.J.: Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations. Appl. Numer. Math. 112, 126–145 (2017)MathSciNetCrossRefMATH
50.
go back to reference Zeng, F.H., Liu, F., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM. J. Numer. Anal. 52, 2599–2622 (2014)MathSciNetCrossRefMATH Zeng, F.H., Liu, F., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM. J. Numer. Anal. 52, 2599–2622 (2014)MathSciNetCrossRefMATH
51.
go back to reference Zeng, F.H., Li, C.P., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Scient. Comput. 37, A55–A78 (2015)MathSciNetCrossRefMATH Zeng, F.H., Li, C.P., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Scient. Comput. 37, A55–A78 (2015)MathSciNetCrossRefMATH
Metadata
Title
A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions
Authors
Hengfei Ding
Changpin Li
Publication date
02-03-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00930-5

Other articles of this Issue 1/2019

Journal of Scientific Computing 1/2019 Go to the issue

Premium Partner