Skip to main content
Top

2021 | OriginalPaper | Chapter

A High-Speed Neural Architecture Search Considering the Number of Weights

Authors : Fuyuka Yamada, Satoki Tsuji, Hiroshi Kawaguchi, Atsuki Inoue, Yasufumi Sakai

Published in: KI 2021: Advances in Artificial Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Neural architecture search (NAS) is a promising method to ascertain network architecture automatically and to build a suitable network for a particular application without any human intervention. However, NAS requires huge computation resources to find the optimal parameters of a network in the training phase of each search. Because a trade-off generally exists between model size and accuracy in deep learning models, the model size tends to increase in pursuit of higher accuracy. In applications with limited resources, such as edge AI, reducing the network weight might be more important than improving its accuracy. Alternatively, achieving high accuracy with maximum resources might be more important. The objective of this research is to find a model with sufficient accuracy with a limited number of weights and to reduce the search time. We improve the Differentiable Network Search (DARTS) algorithm, one of the fastest NAS methods, by adding another constraint to the loss function, which limits the number of network weights. We evaluate the proposed algorithm using three constraints. Compared to the conventional DARTS algorithm, the proposed algorithm reduces the search time by up to 40% when the model size range is set properly. It achieves comparable accuracy with that of DARTS.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014) Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)
3.
go back to reference Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto (2012) Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto (2012)
4.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1. pp. 1097–1105. Curran Associates Inc., Red Hook (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1. pp. 1097–1105. Curran Associates Inc., Red Hook (2012)
6.
go back to reference Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search (2019) Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search (2019)
Metadata
Title
A High-Speed Neural Architecture Search Considering the Number of Weights
Authors
Fuyuka Yamada
Satoki Tsuji
Hiroshi Kawaguchi
Atsuki Inoue
Yasufumi Sakai
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_9

Premium Partner