2021 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
2D Boron: Boraphene, Borophene, Boronene
For many years it was believed that boron can only form 3D allotropes due to its intrinsic electron deficiency. The last 20 years, however, have seen a true revolution in the knowledge and understanding of boron chemistry with synthesis of 2D forms of boron recently being made possible. The key works that contributed to this discovery were influenced by investigations in boron allotrope in various dimensions, including 3D (bulk), 0D (cluster), 1D (nanotube), and 2D (sheet). This chapter is a brief historical overview.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference T. Aizawa, S. Suehara, S. Hishita, S. Otani, Surface phonon dispersion of ZrB 2 (0001) \(\sqrt {3} \times \sqrt {3}\)-B. J. Phys. Condens. Matter. 20(26), 265006 (2008) https://doi.org/10.1088/0953-8984/20/26/265006 T. Aizawa, S. Suehara, S. Hishita, S. Otani, Surface phonon dispersion of ZrB
2 (0001)
\(\sqrt {3} \times \sqrt {3}\)-B. J. Phys. Condens. Matter.
20(26), 265006 (2008)
https://doi.org/10.1088/0953-8984/20/26/265006
2.
go back to reference I. Boustani, A. Quandt, Nanotubules of bare boron clusters: ab initio and density functional study. Europhys. Lett. 39(5), 527–532 (1997). https://doi.org/10.1209/epl/i1997-00388-9 CrossRef I. Boustani, A. Quandt, Nanotubules of bare boron clusters: ab initio and density functional study. Europhys. Lett.
39(5), 527–532 (1997).
https://doi.org/10.1209/epl/i1997-00388-9
CrossRef
3.
go back to reference I. Boustani, Structure and stability of small boron clusters. A density functional theoretical study. Chem. Phys. Lett. 240(1), 135–140 (1995). http://www.sciencedirect.com/science/article/pii/000926149500510B I. Boustani, Structure and stability of small boron clusters. A density functional theoretical study. Chem. Phys. Lett.
240(1), 135–140 (1995).
http://www.sciencedirect.com/science/article/pii/000926149500510B
4.
go back to reference I. Boustani, New convex and spherical structures of bare boron clusters. J. Solid State Chem. 133(1), 182–189 (1997a). https://doi.org/10.1006/jssc.1997.7424 CrossRef I. Boustani, New convex and spherical structures of bare boron clusters. J. Solid State Chem.
133(1), 182–189 (1997a).
https://doi.org/10.1006/jssc.1997.7424
CrossRef
5.
go back to reference I. Boustani, Systematic ab initio investigation of bare boron clusters:mDetermination of the geometry and electronic structures of B n( n = 2 − 14). Phys. Rev. B 55(24), 16426–16438 (1997b). https://doi.org/10.1103/physrevb.55.16426 CrossRef I. Boustani, Systematic ab initio investigation of bare boron clusters:mDetermination of the geometry and electronic structures of B
n(
n = 2 − 14). Phys. Rev. B
55(24), 16426–16438 (1997b).
https://doi.org/10.1103/physrevb.55.16426
CrossRef
6.
go back to reference I. Boustani, A. Quandt, E. Hernández, A. Rubio, New boron based nanostructured materials. J. Chem. Phys. 110(6), 3176–3185 (1999). https://doi.org/10.1063/1.477976 CrossRef I. Boustani, A. Quandt, E. Hernández, A. Rubio, New boron based nanostructured materials. J. Chem. Phys.
110(6), 3176–3185 (1999).
https://doi.org/10.1063/1.477976
CrossRef
7.
go back to reference D. Ciuparu, R.F. Klie, Y. Zhu, L. Pfefferle, Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108(13), 3967–3969 (2004). https://doi.org/10.1021/jp049301b CrossRef D. Ciuparu, R.F. Klie, Y. Zhu, L. Pfefferle, Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B
108(13), 3967–3969 (2004).
https://doi.org/10.1021/jp049301b
CrossRef
8.
go back to reference M.H. Evans, J.D. Joannopoulos, S.T. Pantelides, Electronic and mechanical properties of planar and tubular boron structures. Phys. Rev. B 72(4), 045434 (2005). https://doi.org/10.1103/physrevb.72.045434 M.H. Evans, J.D. Joannopoulos, S.T. Pantelides, Electronic and mechanical properties of planar and tubular boron structures. Phys. Rev. B
72(4), 045434 (2005).
https://doi.org/10.1103/physrevb.72.045434
9.
go back to reference B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8(6), 563–568 (2016). https://doi.org/10.1038/nchem.2491 CrossRef B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem.
8(6), 563–568 (2016).
https://doi.org/10.1038/nchem.2491
CrossRef
10.
go back to reference A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385 CrossRef A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature
499(7459), 419–425 (2013).
https://doi.org/10.1038/nature12385
CrossRef
11.
go back to reference A. Gindulyte, W.N. Lipscomb, L. Massa, Proposed boron nanotubes†. Inorg. Chem. 37(25), 6544–6545 (1998). https://doi.org/10.1021/ic980559o CrossRef A. Gindulyte, W.N. Lipscomb, L. Massa, Proposed boron nanotubes†. Inorg. Chem.
37(25), 6544–6545 (1998).
https://doi.org/10.1021/ic980559o
CrossRef
12.
go back to reference N. Gonzalez Szwacki, Boron fullerenes: a first-principles study. Nanoscale Res. Lett. 3(2), 49–54 (2007). https://doi.org/10.1007/s11671-007-9113-1 CrossRef N. Gonzalez Szwacki, Boron fullerenes: a first-principles study. Nanoscale Res. Lett.
3(2), 49–54 (2007).
https://doi.org/10.1007/s11671-007-9113-1
CrossRef
13.
go back to reference N. Gonzalez Szwacki, The structure and hardness of the highest boride of tungsten, a borophene-based compound. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/s41598-017-04394-1 N. Gonzalez Szwacki, The structure and hardness of the highest boride of tungsten, a borophene-based compound. Sci. Rep.
7(1) (2017).
https://doi.org/10.1038/s41598-017-04394-1
14.
go back to reference N. Gonzalez Szwacki, A. Sadrzadeh, B.I. Yakobson, B 80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98(16), 166804 (2007). https://doi.org/10.1103/physrevlett.98.166804 N. Gonzalez Szwacki, A. Sadrzadeh, B.I. Yakobson, B
80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett.
98(16), 166804 (2007).
https://doi.org/10.1103/physrevlett.98.166804
15.
go back to reference L. Hanley, S.L. Anderson, Production and collision-induced dissociation of small boron cluster ions. J. Phys. Chem. 91(20), 5161–5163 (1987). https://doi.org/10.1021/j100304a007 CrossRef L. Hanley, S.L. Anderson, Production and collision-induced dissociation of small boron cluster ions. J. Phys. Chem.
91(20), 5161–5163 (1987).
https://doi.org/10.1021/j100304a007
CrossRef
16.
go back to reference U. Häussermann, S.I. Simak, R. Ahuja, B. Johansson, Metal-nonmetal transition in the boron group elements. Phys. Rev. Lett. 90(6), 065701 (2003). https://doi.org/10.1103/physrevlett.90.065701 U. Häussermann, S.I. Simak, R. Ahuja, B. Johansson, Metal-nonmetal transition in the boron group elements. Phys. Rev. Lett.
90(6), 065701 (2003).
https://doi.org/10.1103/physrevlett.90.065701
17.
go back to reference T. Jian, X. Chen, S.-D. Li, A.I. Boldyrev, J. Li, L.-S. Wang, Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 48, 3550–3591 (2019). http://dx.doi.org/10.1039/C9CS00233B CrossRef T. Jian, X. Chen, S.-D. Li, A.I. Boldyrev, J. Li, L.-S. Wang, Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev.
48, 3550–3591 (2019).
http://dx.doi.org/10.1039/C9CS00233B
CrossRef
18.
go back to reference H. Kato, K. Yamashita, K. Morokuma, Ab initio MO study of neutral and cationic boron clusters. Chem. Phys. Lett. 190(3), 361–366 (1992). http://www.sciencedirect.com/science/article/pii/000926149285352B. https://doi.org/10.1016/0009-2614(92)85352-B H. Kato, K. Yamashita, K. Morokuma, Ab initio MO study of neutral and cationic boron clusters. Chem. Phys. Lett.
190(3), 361–366 (1992).
http://www.sciencedirect.com/science/article/pii/000926149285352B.
https://doi.org/10.1016/0009-2614(92)85352-B
19.
go back to reference R. Kawai, J.H. Weare, Instability of the B 12 icosahedral cluster: rearrangement to a lower energy structure. J. Chem. Phys. 95(2), 1151–1159 (1991). https://doi.org/10.1063/1.461145 CrossRef R. Kawai, J.H. Weare, Instability of the B
12 icosahedral cluster: rearrangement to a lower energy structure. J. Chem. Phys.
95(2), 1151–1159 (1991).
https://doi.org/10.1063/1.461145
CrossRef
20.
go back to reference B. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, X.C. Zeng, L.-S. Wang, Planar-to-tubular structural transition in boron clusters: B 20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. 102(4), 961–964 (2005). https://www.pnas.org/content/102/4/961. https://doi.org/10.1073/pnas.0408132102 B. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, X.C. Zeng, L.-S. Wang, Planar-to-tubular structural transition in boron clusters: B
20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci.
102(4), 961–964 (2005).
https://www.pnas.org/content/102/4/961.
https://doi.org/10.1073/pnas.0408132102
21.
go back to reference J. Kunstmann, A. Quandt, Constricted boron nanotubes. Chem. Phys. Lett. 402(1–3), 21–26 (2005). https://doi.org/10.1016/j.cplett.2004.11.130 CrossRef J. Kunstmann, A. Quandt, Constricted boron nanotubes. Chem. Phys. Lett.
402(1–3), 21–26 (2005).
https://doi.org/10.1016/j.cplett.2004.11.130
CrossRef
22.
go back to reference S.J. La Placa, P.A. Roland, J.J. Wynne, Boron clusters ( B n, n = 2 − 52) produced by laser ablation of hexagonal boron nitride. Chem. Phys. Lett. 190(3), 163–168 (1992). http://www.sciencedirect.com/science/article/pii/0009261492853196. https://doi.org/10.1016/0009-2614(92)85319-6 S.J. La Placa, P.A. Roland, J.J. Wynne, Boron clusters (
B
n,
n = 2 − 52) produced by laser ablation of hexagonal boron nitride. Chem. Phys. Lett.
190(3), 163–168 (1992).
http://www.sciencedirect.com/science/article/pii/0009261492853196.
https://doi.org/10.1016/0009-2614(92)85319-6
23.
go back to reference K.C. Lau, R. Pandey, Stability and electronic properties of atomistically-engineered 2d boron sheets. J. Phys. Chem. C 111(7), 2906–2912 (2007). https://doi.org/10.1021/jp066719w CrossRef K.C. Lau, R. Pandey, Stability and electronic properties of atomistically-engineered 2d boron sheets. J. Phys. Chem. C
111(7), 2906–2912 (2007).
https://doi.org/10.1021/jp066719w
CrossRef
24.
go back to reference K.C. Lau, R. Pati, R. Pandey, A.C. Pineda, First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chem. Phys. Lett. 418(4–6), 549–554 (2006). https://doi.org/10.1016/j.cplett.2005.10.104 CrossRef K.C. Lau, R. Pati, R. Pandey, A.C. Pineda, First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chem. Phys. Lett.
418(4–6), 549–554 (2006).
https://doi.org/10.1016/j.cplett.2005.10.104
CrossRef
25.
go back to reference D. Li, Q. Tang, J. He, B. Li, G. Ding, C. Feng, H. Zhou, G. Zhang, From two- to three-dimensional van der Waals layered structures of boron crystals: an ab initio study. ACS Omega 4(5), 8015–8021 (2019). https://doi.org/10.1021/acsomega.9b00534 CrossRef D. Li, Q. Tang, J. He, B. Li, G. Ding, C. Feng, H. Zhou, G. Zhang, From two- to three-dimensional van der Waals layered structures of boron crystals: an ab initio study. ACS Omega
4(5), 8015–8021 (2019).
https://doi.org/10.1021/acsomega.9b00534
CrossRef
26.
go back to reference W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, K. Wu, Experimental realization of honeycomb borophene. Sci. Bull. 63(5), 282–286 (2018). https://doi.org/10.1016/j.scib.2018.02.006 CrossRef W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, K. Wu, Experimental realization of honeycomb borophene. Sci. Bull.
63(5), 282–286 (2018).
https://doi.org/10.1016/j.scib.2018.02.006
CrossRef
27.
go back to reference Y. Liu, E.S. Penev, B.I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations. Angewandte Chemie 125(11), 3238–3241 (2013). https://doi.org/10.1002/ange.201207972 CrossRef Y. Liu, E.S. Penev, B.I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations. Angewandte Chemie
125(11), 3238–3241 (2013).
https://doi.org/10.1002/ange.201207972
CrossRef
28.
go back to reference X.-M. Luo, T. Jian, L.-J. Cheng, W.-L. Li, Q. Chen, R. Li, H.-J. Zhai, S.-D. Li, A.I. Boldyrev, J. Li, L.-S. Wang, B \(_{26}^{-}\): the smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. Chem. Phys. Lett. 683, 336–341 (2017). https://doi.org/10.1016/j.cplett.2016.12.051 X.-M. Luo, T. Jian, L.-J. Cheng, W.-L. Li, Q. Chen, R. Li, H.-J. Zhai, S.-D. Li, A.I. Boldyrev, J. Li, L.-S. Wang, B
\(_{26}^{-}\): the smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. Chem. Phys. Lett.
683, 336–341 (2017).
https://doi.org/10.1016/j.cplett.2016.12.051
29.
go back to reference A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015). https://doi.org/10.1126/science.aad1080 CrossRef A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science
350(6267), 1513–1516 (2015).
https://doi.org/10.1126/science.aad1080
CrossRef
30.
go back to reference E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Polymorphism of two-dimensional boron. Nano Lett. 12(5), 2441–2445 (2012). https://doi.org/10.1021/nl3004754 CrossRef E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Polymorphism of two-dimensional boron. Nano Lett.
12(5), 2441–2445 (2012).
https://doi.org/10.1021/nl3004754
CrossRef
31.
go back to reference Z.A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Planar hexagonal B 36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5(1), 3113 (2014). https://doi.org/10.1038/ncomms4113 Z.A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Planar hexagonal B
36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun.
5(1), 3113 (2014).
https://doi.org/10.1038/ncomms4113
32.
go back to reference H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, B. Issendorff, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C 20. Nature 407(6800), 60–63 (2000). https://doi.org/10.1038/35024037 CrossRef H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, B. Issendorff, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C
20. Nature
407(6800), 60–63 (2000).
https://doi.org/10.1038/35024037
CrossRef
33.
go back to reference P. Ranjan, T.K. Sahu, R. Bhushan, S. SRKC Yamijala, D.J. Late, P. Kumar, A. Vinu, Freestanding borophene and its hybrids. Adv. Mater. 31(27), 1900353 (2019). https://doi.org/10.1002/adma.201900353 P. Ranjan, T.K. Sahu, R. Bhushan, S. SRKC Yamijala, D.J. Late, P. Kumar, A. Vinu, Freestanding borophene and its hybrids. Adv. Mater.
31(27), 1900353 (2019).
https://doi.org/10.1002/adma.201900353
34.
go back to reference A. Ricca, C.W. Bauschlicher, The structure and stability of B \(_{n}^{+}\) clusters. Chem. Phys. 208(2), 233–242 (1996). http://www.sciencedirect.com/science/article/pii/0301010496000687. https://doi.org/10.1016/0301-0104(96)00068-7 A. Ricca, C.W. Bauschlicher, The structure and stability of B
\(_{n}^{+}\) clusters. Chem. Phys.
208(2), 233–242 (1996).
http://www.sciencedirect.com/science/article/pii/0301010496000687.
https://doi.org/10.1016/0301-0104(96)00068-7
35.
go back to reference A. Sadrzadeh, O.V. Pupysheva, A.K. Singh, B.I. Yakobson, The boron buckyball and its precursors: an electronic structure study. J. Phys. Chem. A 112(51), 13679–13683 (2008). https://doi.org/10.1021/jp807406x CrossRef A. Sadrzadeh, O.V. Pupysheva, A.K. Singh, B.I. Yakobson, The boron buckyball and its precursors: an electronic structure study. J. Phys. Chem. A
112(51), 13679–13683 (2008).
https://doi.org/10.1021/jp807406x
CrossRef
36.
go back to reference K. Shirai, Phase diagram of boron crystals. Jpn. J. Appl. Phys. 56(5S3), 05FA06 (2017). https://doi.org/10.7567/jjap.56.05fa06 K. Shirai, Phase diagram of boron crystals. Jpn. J. Appl. Phys.
56(5S3), 05FA06 (2017).
https://doi.org/10.7567/jjap.56.05fa06
37.
go back to reference S.N. Shirodkar, E.S. Penev, B.I. Yakobson, Honeycomb boron: alchemy on aluminum pan? Sci. Bull. 63(5), 270–271 (2018). https://doi.org/10.1016/j.scib.2018.02.019 CrossRef S.N. Shirodkar, E.S. Penev, B.I. Yakobson, Honeycomb boron: alchemy on aluminum pan? Sci. Bull.
63(5), 270–271 (2018).
https://doi.org/10.1016/j.scib.2018.02.019
CrossRef
38.
go back to reference A.K. Singh, A. Sadrzadeh, B.I. Yakobson, Probing properties of boron α-tubes by ab initio calculations. Nano Lett. 8(5), 1314–1317 (2008). https://doi.org/10.1021/nl073295o CrossRef A.K. Singh, A. Sadrzadeh, B.I. Yakobson, Probing properties of boron
α-tubes by ab initio calculations. Nano Lett.
8(5), 1314–1317 (2008).
https://doi.org/10.1021/nl073295o
CrossRef
39.
go back to reference S. Suehara, T. Aizawa, T. Sasaki, Graphenelike surface boron layer: structural phases on transition-metal diborides (0001). Phys. Rev. B 81(8), 085423 (2010). https://doi.org/10.1103/physrevb.81.085423 S. Suehara, T. Aizawa, T. Sasaki, Graphenelike surface boron layer: structural phases on transition-metal diborides (0001). Phys. Rev. B
81(8), 085423 (2010).
https://doi.org/10.1103/physrevb.81.085423
40.
go back to reference D.B. Sullenger, K.D. Phipps, P.W. Seabaugh, C.R. Hudgens, D.E. Sands, J.S. Cantrell, Boron modifications produced in an induction-coupled argon plasma. Science 163(3870), 935–937 (1969). https://science.sciencemag.org/content/163/3870/935 CrossRef D.B. Sullenger, K.D. Phipps, P.W. Seabaugh, C.R. Hudgens, D.E. Sands, J.S. Cantrell, Boron modifications produced in an induction-coupled argon plasma. Science
163(3870), 935–937 (1969).
https://science.sciencemag.org/content/163/3870/935
CrossRef
41.
go back to reference H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99(11), 115501 (2007). https://doi.org/10.1103/physrevlett.99.115501 H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett.
99(11), 115501 (2007).
https://doi.org/10.1103/physrevlett.99.115501
42.
go back to reference T. Tarkowski, J.A. Majewski, N. Gonzalez Szwacki, Energy decomposition analysis of neutral and negatively charged borophenes. FlatChem 7, 42–47 (2018). https://doi.org/10.1016/j.flatc.2017.08.004 CrossRef T. Tarkowski, J.A. Majewski, N. Gonzalez Szwacki, Energy decomposition analysis of neutral and negatively charged borophenes. FlatChem
7, 42–47 (2018).
https://doi.org/10.1016/j.flatc.2017.08.004
CrossRef
43.
go back to reference J. Tian, Z. Xu, C. Shen, F. Liu, N. Xu, H.-J. Gao, One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale 2(8), 1375 (2010). https://doi.org/10.1039/c0nr00051e J. Tian, Z. Xu, C. Shen, F. Liu, N. Xu, H.-J. Gao, One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale
2(8), 1375 (2010).
https://doi.org/10.1039/c0nr00051e
44.
go back to reference M.J. van Setten, M.A. Uijttewaal, G.A. de Wijs, & R.A. de Groot, Thermodynamic stability of boron: the role of defects and zero point motion. J. Am. Chem. Soc. 129(9), 2458–2465 (2007). https://doi.org/10.1021/ja0631246. PMID: 17295480 CrossRef M.J. van Setten, M.A. Uijttewaal, G.A. de Wijs, & R.A. de Groot, Thermodynamic stability of boron: the role of defects and zero point motion. J. Am. Chem. Soc.
129(9), 2458–2465 (2007).
https://doi.org/10.1021/ja0631246. PMID: 17295480
CrossRef
45.
go back to reference K. Wade, The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 792–793 (1971). http://doi.org/10.1039/C29710000792 K. Wade, The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 792–793 (1971).
http://doi.org/10.1039/C29710000792
46.
go back to reference R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nature Nanotechnol. 14(1), 44–49 (2019). https://doi.org/10.1038/s41565-018-0317-6 CrossRef R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nature Nanotechnol.
14(1), 44–49 (2019).
https://doi.org/10.1038/s41565-018-0317-6
CrossRef
47.
go back to reference X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6(8), 7443–7453 (2012). https://doi.org/10.1021/nn302696v CrossRef X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano
6(8), 7443–7453 (2012).
https://doi.org/10.1021/nn302696v
CrossRef
48.
go back to reference X. Yang, Y. Ding, J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys. Rev. B 77(4), 041402(R) (2008). https://doi.org/10.1103/physrevb.77.041402 X. Yang, Y. Ding, J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys. Rev. B
77(4), 041402(R) (2008).
https://doi.org/10.1103/physrevb.77.041402
49.
go back to reference X. Yu, L. Li, X.-W. Xu, C.-C. Tang, Prediction of two- dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C 116(37), 20075–20079 (2012). https://doi.org/10.1021/jp305545z CrossRef X. Yu, L. Li, X.-W. Xu, C.-C. Tang, Prediction of two- dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C
116(37), 20075–20079 (2012).
https://doi.org/10.1021/jp305545z
CrossRef
50.
go back to reference H.-J. Zhai, B. Kiran, J. Li, L.-S. Wang, Hydrocarbon analogues of boron clusters – planarity, aromaticity and antiaromaticity. Nat. Mater. 2(12), 827–833 (2003). https://doi.org/10.1038/nmat1012 CrossRef H.-J. Zhai, B. Kiran, J. Li, L.-S. Wang, Hydrocarbon analogues of boron clusters – planarity, aromaticity and antiaromaticity. Nat. Mater.
2(12), 827–833 (2003).
https://doi.org/10.1038/nmat1012
CrossRef
51.
go back to reference Z. Zhang, E.S. Penev, B.I. Yakobson, Polyphony in B flat. Nat. Chem. 8(6), 525–527 (2016). https://doi.org/10.1038/nchem.2521 CrossRef Z. Zhang, E.S. Penev, B.I. Yakobson, Polyphony in B flat. Nat. Chem.
8(6), 525–527 (2016).
https://doi.org/10.1038/nchem.2521
CrossRef
52.
go back to reference Z. Zhang, S.N. Shirodkar, Y. Yang, B.I. Yakobson, Gate-voltage control of borophene structure formation. Angew. Chem. Int. Ed. 56(48), 15421–15426 (2017). https://doi.org/10.1002/anie.201705459 CrossRef Z. Zhang, S.N. Shirodkar, Y. Yang, B.I. Yakobson, Gate-voltage control of borophene structure formation. Angew. Chem. Int. Ed.
56(48), 15421–15426 (2017).
https://doi.org/10.1002/anie.201705459
CrossRef
- Title
- A Historical Review of Theoretical Boron Allotropes in Various Dimensions
- DOI
- https://doi.org/10.1007/978-3-030-49999-0_1
- Authors:
-
Nevill Gonzalez Szwacki
Iwao Matsuda
- Publisher
- Springer International Publishing
- Sequence number
- 1
- Chapter number
- Chapter 1