Skip to main content
Top

20-07-2024

A Human Word Association Based Model for Topic Detection in Social Networks

Authors: Mehrdad Ranjbar-Khadivi, Shahin Akbarpour, Mohammad-Reza Feizi-Derakhshi, Babak Anari

Published in: Annals of Data Science

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the widespread use of social networks, detecting the topics discussed on these platforms has become a significant challenge. Current approaches primarily rely on frequent pattern mining or semantic relations, often neglecting the structure of the language. Language structural methods aim to discover the relationships between words and how humans understand them. Therefore, this paper introduces a topic detection framework for social networks based on the concept of imitating the mental ability of word association. This framework employs the Human Word Association method and includes a specially designed extraction algorithm. The performance of this method is evaluated using the FA-CUP dataset, a benchmark in the field of topic detection. The results indicate that the proposed method significantly improves topic detection compared to other methods, as evidenced by Topic-recall and the keyword F1 measure. Additionally, to assess the applicability and generalizability of the proposed method, a dataset of Telegram posts in the Persian language is used. The results demonstrate that this method outperforms other topic detection methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
Literature
14.
18.
go back to reference Petrović S, Osborne M, Lavrenko V (2010) Streaming first story detection with application to Twitter. In: Kaplan R, Burstein J, Harper M, Penn G (eds) Human language technologies: the 2010 annual conference of the North American chapter of the association for computational linguistics, pp 181–189. Association for Computational Linguistics, Los Angeles, California. https://aclanthology.org/N10-1021 Petrović S, Osborne M, Lavrenko V (2010) Streaming first story detection with application to Twitter. In: Kaplan R, Burstein J, Harper M, Penn G (eds) Human language technologies: the 2010 annual conference of the North American chapter of the association for computational linguistics, pp 181–189. Association for Computational Linguistics, Los Angeles, California. https://​aclanthology.​org/​N10-1021
19.
go back to reference Allan J, Lavrenko V, Malin D, Swan R (2000) Detections, bounds, and timelines: Umass and tdt-3. In: Proceedings of topic detection and tracking workshop, pp 167–174 Allan J, Lavrenko V, Malin D, Swan R (2000) Detections, bounds, and timelines: Umass and tdt-3. In: Proceedings of topic detection and tracking workshop, pp 167–174
20.
22.
go back to reference Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022 Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022
24.
go back to reference Petkos G, Papadopoulos S, Aiello L, Skraba R, Kompatsiaris Y (2014) A soft frequent pattern mining approach for textual topic detection. In: Proceedings of the 4th international conference on web intelligence, mining and semantics (WIMS14)—WIMS ’14, pp 1–10. ACM Press, New York, New York, USA. https://doi.org/10.1145/2611040.2611068 Petkos G, Papadopoulos S, Aiello L, Skraba R, Kompatsiaris Y (2014) A soft frequent pattern mining approach for textual topic detection. In: Proceedings of the 4th international conference on web intelligence, mining and semantics (WIMS14)—WIMS ’14, pp 1–10. ACM Press, New York, New York, USA. https://​doi.​org/​10.​1145/​2611040.​2611068
27.
go back to reference Nur’aini K, Najahaty I, Hidayati L, Murfi H, Nurrohmah S (2015) Combination of singular value decomposition and k-means clustering methods for topic detection on twitter. In: 2015 International conference on advanced computer science and information systems (ICACSIS), pp 123–128. https://doi.org/10.1109/ICACSIS.2015.7415168 Nur’aini K, Najahaty I, Hidayati L, Murfi H, Nurrohmah S (2015) Combination of singular value decomposition and k-means clustering methods for topic detection on twitter. In: 2015 International conference on advanced computer science and information systems (ICACSIS), pp 123–128. https://​doi.​org/​10.​1109/​ICACSIS.​2015.​7415168
28.
go back to reference Li C, Sun A, Datta A (2012) Twevent: segment-based event detection from tweets. In: Proceedings of the 21st ACM international conference on information and knowledge management. In: CIKM ’12, pp 155–164. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2396761.2396785 Li C, Sun A, Datta A (2012) Twevent: segment-based event detection from tweets. In: Proceedings of the 21st ACM international conference on information and knowledge management. In: CIKM ’12, pp 155–164. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​2396761.​2396785
32.
go back to reference Steyvers M, Shiffrin RM, Nelson DL (2004) Word association spaces for predicting semantic similarity effects in episodic memory. In: Healy AF (ed) Experimental cognitive psychology and its applications. American Psychological Association, pp 237–249. https://doi.org/10.1037/10895-018CrossRef Steyvers M, Shiffrin RM, Nelson DL (2004) Word association spaces for predicting semantic similarity effects in episodic memory. In: Healy AF (ed) Experimental cognitive psychology and its applications. American Psychological Association, pp 237–249. https://​doi.​org/​10.​1037/​10895-018CrossRef
36.
go back to reference VasfiSisi N, Feizi Derakhshi MR (2013) Text classification with machine learning algorithms. J Basic Appl Sci Res 3(1):31–35 VasfiSisi N, Feizi Derakhshi MR (2013) Text classification with machine learning algorithms. J Basic Appl Sci Res 3(1):31–35
38.
40.
go back to reference Olson D, Shi Y (2007) Introduction to business data mining Olson D, Shi Y (2007) Introduction to business data mining
Metadata
Title
A Human Word Association Based Model for Topic Detection in Social Networks
Authors
Mehrdad Ranjbar-Khadivi
Shahin Akbarpour
Mohammad-Reza Feizi-Derakhshi
Babak Anari
Publication date
20-07-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00561-0

Premium Partner