Skip to main content
Top
Published in: Neural Computing and Applications 20/2021

07-05-2021 | Original Article

A hybrid artificial bee colony with whale optimization algorithm for improved breast cancer diagnosis

Authors: Punitha Stephan, Thompson Stephan, Ramani Kannan, Ajith Abraham

Published in: Neural Computing and Applications | Issue 20/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Breast cancer is the most common among women that leads to death if not diagnosed at early stages. Early diagnosis plays a vital role in decreasing the mortality rate globally. Manual methods for diagnosing breast cancers suffer from human errors and inaccuracy, and consume time. A computer-aided diagnosis (CAD) can overcome the disadvantages of manual methods and helps radiologists for accurate decision-making. A CAD system based on artificial neural network (ANN) optimized using a swarm-based approach can improve the accuracy of breast cancer diagnosis due to its strong prediction capabilities. Artificial bee colony (ABC) and whale optimization are metaheuristic search algorithms used to solve combinatorial optimization problems. This paper proposes a hybrid artificial bee colony with whale optimization algorithm (HAW) by integrating the exploitative employee bee phase of ABC with the bubble net attacking method of whale optimization to propose an employee bee attacking phase. In the employee bee attacking phase, employee bees use exploitation of humpback whales for finding better food source positions. The weak exploration of standard ABC is improved using the proposed mutative initialization phase that forms the explorative phase of the HAW algorithm. HAW algorithm is used in simultaneous feature selection (FS) and parameter optimization of an ANN model. HAW is implemented using backpropagation learning that includes resilient backpropagation (HAW-RP), Levenberg–Marquart (HAW-LM) and momentum-based gradient descent (HAW-GD). These hybrid variants are evaluated using various breast cancer datasets in terms of accuracy, complexity and computational time. HAW-RP variant achieved higher accuracy of 99.2%, 98.5%, 96.3%, 98.8%, 98.7% and 99.1% with low-complexity ANN model when compared to HAW-LM and HAW-GD for WBCD, WDBC, WPBC, DDSM, MIAS and INbreast, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Eltoukhy MM, Faye I, Samir BB (2010) A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput Biol Med 40(4):384–391CrossRef Eltoukhy MM, Faye I, Samir BB (2010) A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput Biol Med 40(4):384–391CrossRef
3.
go back to reference Zhao M, Fu C, Ji L, Tang K, Zhou M (2011) FS and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Syst Appl 38(5):5197–5204CrossRef Zhao M, Fu C, Ji L, Tang K, Zhou M (2011) FS and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Syst Appl 38(5):5197–5204CrossRef
4.
go back to reference Fu JC, Lee SK, Wong STC, Yeh JY, Wang AH, Wu HK (2005) Image segmentation, feature selection and pattern classification for mammographic microcalcifications. Comput Med Imaging Graph 29:419–429CrossRef Fu JC, Lee SK, Wong STC, Yeh JY, Wang AH, Wu HK (2005) Image segmentation, feature selection and pattern classification for mammographic microcalcifications. Comput Med Imaging Graph 29:419–429CrossRef
5.
go back to reference Ghoncheh M, Pournamdar Z, Salehiniya H (2016) Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17(S3):43–46CrossRef Ghoncheh M, Pournamdar Z, Salehiniya H (2016) Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17(S3):43–46CrossRef
6.
go back to reference Übeyli ED (2007) Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl 33(4):1054–1062CrossRef Übeyli ED (2007) Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl 33(4):1054–1062CrossRef
7.
go back to reference Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 36(2):3465–3469CrossRef Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 36(2):3465–3469CrossRef
8.
go back to reference Punitha S, Amuthan A, Suresh Joseph K (2019) enhanced monarchy butterfly optimization Technique for effective breast cancer diagnosis. J Med Syst 43(7):1–14CrossRef Punitha S, Amuthan A, Suresh Joseph K (2019) enhanced monarchy butterfly optimization Technique for effective breast cancer diagnosis. J Med Syst 43(7):1–14CrossRef
9.
go back to reference Thompson K, Suresh Joseph K (2018) Particle swarm optimization-based energy efficient channel assignment technique for clustered cognitive radio sensor networks. Comput J Oxford Univ Press 61(6):926–936 Thompson K, Suresh Joseph K (2018) Particle swarm optimization-based energy efficient channel assignment technique for clustered cognitive radio sensor networks. Comput J Oxford Univ Press 61(6):926–936
10.
go back to reference Thompson S, Suresh Joseph K (2016) PSO assisted OLSR routing for cognitive radio vehicular sensor networks. In: ACM international conference on informatics and analytics (pp. 1–8) Thompson S, Suresh Joseph K (2016) PSO assisted OLSR routing for cognitive radio vehicular sensor networks. In: ACM international conference on informatics and analytics (pp. 1–8)
11.
go back to reference Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life (pp. 134–42) Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life (pp. 134–42)
12.
go back to reference Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science (pp. 39–43) Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science (pp. 39–43)
13.
go back to reference Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65–74). Springer; New York Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65–74). Springer; New York
14.
go back to reference Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numericalfunction optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471MathSciNetMATHCrossRef Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numericalfunction optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471MathSciNetMATHCrossRef
15.
go back to reference Mirjalili S, Mirjalili S, Hatamlou A (2015) Multi-verse optimizer: a nature-inspiredalgorithm for global optimization. Neural Comput Appl 1–19 /03/172015 Mirjalili S, Mirjalili S, Hatamlou A (2015) Multi-verse optimizer: a nature-inspiredalgorithm for global optimization. Neural Comput Appl 1–19 /03/172015
16.
go back to reference Gandomi AH, Alavi AH (2012) Krill herd: A new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845MathSciNetMATHCrossRef Gandomi AH, Alavi AH (2012) Krill herd: A new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845MathSciNetMATHCrossRef
17.
go back to reference Wang G-G, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl 28(3):1–20 Wang G-G, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl 28(3):1–20
18.
go back to reference P. K. M (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3), 52–67 P. K. M (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3), 52–67
19.
go back to reference Castro L, Timmis JI (2003) Artificial immune systems as a novel soft computing paradigm. J Soft Comput 7: 526 Castro L, Timmis JI (2003) Artificial immune systems as a novel soft computing paradigm. J Soft Comput 7: 526
20.
go back to reference Gandomi AH (2014) Interior search algorithm (ISA): A novel approach for global optimization. ISA Trans 53(4):1168–1183CrossRef Gandomi AH (2014) Interior search algorithm (ISA): A novel approach for global optimization. ISA Trans 53(4):1168–1183CrossRef
21.
go back to reference Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRef Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRef
22.
go back to reference Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine Predators Algorithm: A Nature-inspired Metaheuristic. Expert Syst Appl 113377 Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine Predators Algorithm: A Nature-inspired Metaheuristic. Expert Syst Appl 113377
23.
go back to reference Furundzic D, Djordjevic M, Bekic AJ (1998) Neural networks approach to early breast cancer detection. J Syst Architect 44(8):617–633CrossRef Furundzic D, Djordjevic M, Bekic AJ (1998) Neural networks approach to early breast cancer detection. J Syst Architect 44(8):617–633CrossRef
24.
go back to reference Kolen JF, Pollack JB (1991) Back propagation is sensitive to initial conditions. Adv Neural Inf Process Syst 3:860–867 Kolen JF, Pollack JB (1991) Back propagation is sensitive to initial conditions. Adv Neural Inf Process Syst 3:860–867
25.
go back to reference Ferentinos KP (2005) Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms. Neural Netw 18(7):934–950MathSciNetCrossRef Ferentinos KP (2005) Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms. Neural Netw 18(7):934–950MathSciNetCrossRef
26.
go back to reference Setiono R, Liu H (1997) Neural-network feature selector. IEEE Trans Neural Networks 8(3):654–662CrossRef Setiono R, Liu H (1997) Neural-network feature selector. IEEE Trans Neural Networks 8(3):654–662CrossRef
27.
go back to reference Verikas A, Bacauskiene M (2002) FS with neural networks. Pattern Recogn Lett 23(11):1323–1335MATHCrossRef Verikas A, Bacauskiene M (2002) FS with neural networks. Pattern Recogn Lett 23(11):1323–1335MATHCrossRef
28.
go back to reference Kabir MM, Islam MM, Murase K (2010) A new wrapper FS approach using neural network. Neurocomputing 73(16–18):3273–3283CrossRef Kabir MM, Islam MM, Murase K (2010) A new wrapper FS approach using neural network. Neurocomputing 73(16–18):3273–3283CrossRef
29.
go back to reference Telikani A, Gandomi AH, Shahbahrami A, Dehkordi MN (2020) Privacy-preserving in association rule mining using an improved discrete binary artificial bee colony. Expert Syst Appl 144:113097CrossRef Telikani A, Gandomi AH, Shahbahrami A, Dehkordi MN (2020) Privacy-preserving in association rule mining using an improved discrete binary artificial bee colony. Expert Syst Appl 144:113097CrossRef
30.
go back to reference Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef
31.
go back to reference Shunmugapriya P, Kanmani S (2017) A hybrid algorithm using ant and bee colony optimization for FS and classification (AC-ABC Hybrid). Swarm Evol Comput 36:27–36CrossRef Shunmugapriya P, Kanmani S (2017) A hybrid algorithm using ant and bee colony optimization for FS and classification (AC-ABC Hybrid). Swarm Evol Comput 36:27–36CrossRef
32.
go back to reference Zorarpacı E, Özel SA (2016) A hybrid approach of differential evolution and artificial bee colony for FS. Expert Syst Appl 62:91–103CrossRef Zorarpacı E, Özel SA (2016) A hybrid approach of differential evolution and artificial bee colony for FS. Expert Syst Appl 62:91–103CrossRef
33.
go back to reference Shanthi S, Bhaskaran VM (2014) “Modified artificial bee colony-based FS: A new method in the application of mammogram image classification.” Int J Sci Eng Tech Res (IJSETR) 3(6):1664–1667 Shanthi S, Bhaskaran VM (2014) “Modified artificial bee colony-based FS: A new method in the application of mammogram image classification.” Int J Sci Eng Tech Res (IJSETR) 3(6):1664–1667
34.
go back to reference Rao H, Shi X, Rodrigue AK, Feng J, Xia Y, Elhoseny M, Yuan X, Gu L (2019) FS based on artificial bee colony and gradient boosting decision tree. Appl Soft Comput 74:634–642CrossRef Rao H, Shi X, Rodrigue AK, Feng J, Xia Y, Elhoseny M, Yuan X, Gu L (2019) FS based on artificial bee colony and gradient boosting decision tree. Appl Soft Comput 74:634–642CrossRef
35.
go back to reference Badem H, Basturk A, Caliskan A, Yuksel ME (2017) A new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithms. Neurocomputing 266:506–526CrossRef Badem H, Basturk A, Caliskan A, Yuksel ME (2017) A new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithms. Neurocomputing 266:506–526CrossRef
36.
go back to reference Garro BA, Rodríguez K, Vázquez RA (2016) Classification of DNA microarrays using ANNs and ABC algorithm. Appl Soft Comput 38:548–560CrossRef Garro BA, Rodríguez K, Vázquez RA (2016) Classification of DNA microarrays using ANNs and ABC algorithm. Appl Soft Comput 38:548–560CrossRef
37.
go back to reference Palanisamy S, Kanmani S (2012) Artificial Bee Colony Approach for Optimizing FS. Int J Comput Sci Issue 9(3):432–438 Palanisamy S, Kanmani S (2012) Artificial Bee Colony Approach for Optimizing FS. Int J Comput Sci Issue 9(3):432–438
38.
go back to reference Schiezaro M, Pedrini H (2013) Data FS based on Artificial Bee Colony algorithm. EURASIP J Image Video Process 1:2013 Schiezaro M, Pedrini H (2013) Data FS based on Artificial Bee Colony algorithm. EURASIP J Image Video Process 1:2013
39.
go back to reference Djellali H, Djebbar A, Zine NG, Azizi N (2018) Hybrid Artificial Bees Colony and Particle Swarm on FS. In: Computational intelligence and its applications IFIP advances in information and communication technology (pp. 93–105) Djellali H, Djebbar A, Zine NG, Azizi N (2018) Hybrid Artificial Bees Colony and Particle Swarm on FS. In: Computational intelligence and its applications IFIP advances in information and communication technology (pp. 93–105)
40.
go back to reference Nagarajan G, Minu R, Muthukumar B, Vedanarayanan V, Sundarsingh S (2016) Hybrid genetic algorithm for medical image feature extraction and selection. Proc Comput Sci 85:455–462CrossRef Nagarajan G, Minu R, Muthukumar B, Vedanarayanan V, Sundarsingh S (2016) Hybrid genetic algorithm for medical image feature extraction and selection. Proc Comput Sci 85:455–462CrossRef
41.
go back to reference Sayed GI, Darwish A, Hassanien AE, Pan JS (2016) Breast cancer diagnosis approach based on meta-heuristic optimization algorithm inspired by the bubble-net hunting strategy of Whales. In: Advances in intelligent systems and computing genetic and evolutionary computing (pp. 306–313) Sayed GI, Darwish A, Hassanien AE, Pan JS (2016) Breast cancer diagnosis approach based on meta-heuristic optimization algorithm inspired by the bubble-net hunting strategy of Whales. In: Advances in intelligent systems and computing genetic and evolutionary computing (pp. 306–313)
42.
go back to reference Jona J, Nagaveni N (2014) Ant-cuckoo Colony Optimization for FS in Digital Mammogram. Pak J Biol Sci 17(2):266–271CrossRef Jona J, Nagaveni N (2014) Ant-cuckoo Colony Optimization for FS in Digital Mammogram. Pak J Biol Sci 17(2):266–271CrossRef
43.
go back to reference Prechelt L (1994) Proben1: a set of neural network benchmark problems and benchmarking rules. Technical Report, University of Karlsruhe, Karlsruhe, Germany Prechelt L (1994) Proben1: a set of neural network benchmark problems and benchmarking rules. Technical Report, University of Karlsruhe, Karlsruhe, Germany
44.
go back to reference Quinlan JR (1996) Improved Use of Continuous Attributes in C4.5. J Artific Intell Res 4:77–90MATHCrossRef Quinlan JR (1996) Improved Use of Continuous Attributes in C4.5. J Artific Intell Res 4:77–90MATHCrossRef
45.
go back to reference Hamilton HJ, Shan N, Cercone N (1996) RIAC: a rule induction algorithm based on approximate classification. In: International conference on engineering applications of neural networks, University of Regina Hamilton HJ, Shan N, Cercone N (1996) RIAC: a rule induction algorithm based on approximate classification. In: International conference on engineering applications of neural networks, University of Regina
46.
go back to reference Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16(2):149–169CrossRef Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16(2):149–169CrossRef
47.
go back to reference Peña-Reyes CA, Sipper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17(2):131–155CrossRef Peña-Reyes CA, Sipper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17(2):131–155CrossRef
48.
go back to reference Setiono R (2000) Generating concise and accurate classification rules for breast cancer diagnosis. Artif Intell Med 18(3):205–219CrossRef Setiono R (2000) Generating concise and accurate classification rules for breast cancer diagnosis. Artif Intell Med 18(3):205–219CrossRef
49.
go back to reference Albrecht A, Lappas G, Vinterbo S, Wong C, Ohno-Machado L (2002) Two applications of the LSA machine. In: Proceedings of the 9th international conference on neural information processing (pp. 184–189). ICONIP 02 Albrecht A, Lappas G, Vinterbo S, Wong C, Ohno-Machado L (2002) Two applications of the LSA machine. In: Proceedings of the 9th international conference on neural information processing (pp. 184–189). ICONIP 02
50.
go back to reference Fogel DB, Wasson EC, Boughton EM (1995) Evolving neural networks for detecting breast cancer. Cancer Lett 96(1):49–53CrossRef Fogel DB, Wasson EC, Boughton EM (1995) Evolving neural networks for detecting breast cancer. Cancer Lett 96(1):49–53CrossRef
51.
go back to reference Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recogn Lett 24(14):2195–2207MATHCrossRef Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recogn Lett 24(14):2195–2207MATHCrossRef
52.
go back to reference Polat K, Güneş S (2007) Breast cancer diagnosis using least square support vector machine. Dig Sign Process 17(4):694–701CrossRef Polat K, Güneş S (2007) Breast cancer diagnosis using least square support vector machine. Dig Sign Process 17(4):694–701CrossRef
53.
go back to reference Guijarro-Berdiñas B, Fontenla-Romero O, Pérez-Sánchez B, Fraguela P (2007) “A linear learning method for multilayer perceptrons using least-squares”, intelligent data engineering and automated learning - ideaL. Lect Notes Comput Sci 4881:365–374CrossRef Guijarro-Berdiñas B, Fontenla-Romero O, Pérez-Sánchez B, Fraguela P (2007) “A linear learning method for multilayer perceptrons using least-squares”, intelligent data engineering and automated learning - ideaL. Lect Notes Comput Sci 4881:365–374CrossRef
54.
go back to reference Stoean R, Stoean C (2013) Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with FS. Expert Syst Appl 40(7):2677–2686MathSciNetCrossRef Stoean R, Stoean C (2013) Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with FS. Expert Syst Appl 40(7):2677–2686MathSciNetCrossRef
55.
go back to reference Ahmad F, Isa NAM, Hussain Z, Osman MK, Sulaiman SN (2014) A GA-based FS and parameter optimization of an ANN in diagnosing breast cancer. Pattern Anal Appl 18(4):861–870CrossRef Ahmad F, Isa NAM, Hussain Z, Osman MK, Sulaiman SN (2014) A GA-based FS and parameter optimization of an ANN in diagnosing breast cancer. Pattern Anal Appl 18(4):861–870CrossRef
56.
go back to reference Karthik S, Perumal RS, Chandra Mouli PVSSR (2018) Breast cancer classification using deep neural networks. In: Knowledge Computing and Its Applications (pp. 227–241) Karthik S, Perumal RS, Chandra Mouli PVSSR (2018) Breast cancer classification using deep neural networks. In: Knowledge Computing and Its Applications (pp. 227–241)
57.
go back to reference Bamakan SMH, Gholami P (2014) A novel FS method based on an integrated data envelopment analysis and entropy model. Proc Comput Sci 31:632–638CrossRef Bamakan SMH, Gholami P (2014) A novel FS method based on an integrated data envelopment analysis and entropy model. Proc Comput Sci 31:632–638CrossRef
58.
go back to reference Xue B, Zhang M, Browne WN (2012) New fitness functions in binary particle swarm optimisation for FS. In: 2012 IEEE congress on evolutionary computation (pp. 1–8) Xue B, Zhang M, Browne WN (2012) New fitness functions in binary particle swarm optimisation for FS. In: 2012 IEEE congress on evolutionary computation (pp. 1–8)
59.
go back to reference Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for FS in classification: Novel initialisation and updating mechanisms. Appl Soft Comput 18:261–276CrossRef Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for FS in classification: Novel initialisation and updating mechanisms. Appl Soft Comput 18:261–276CrossRef
60.
go back to reference Maldonado S, Weber R, Basak J (2011) Simultaneous FS and classification using kernel-penalized support vector machines. Inf Sci 181(1):115–128CrossRef Maldonado S, Weber R, Basak J (2011) Simultaneous FS and classification using kernel-penalized support vector machines. Inf Sci 181(1):115–128CrossRef
61.
go back to reference Miao D, Gao C, Zhang N, Zhang Z (2011) Diverse reduct subspaces-based co-training for partially labeled data. Int J Approx Reason 52(8):1103–1117MathSciNetCrossRef Miao D, Gao C, Zhang N, Zhang Z (2011) Diverse reduct subspaces-based co-training for partially labeled data. Int J Approx Reason 52(8):1103–1117MathSciNetCrossRef
62.
go back to reference Luukka P, Leppälampi T (2006) Similarity classifier with generalized mean applied to medical data. Comput Biol Med 36(9):1026–1040CrossRef Luukka P, Leppälampi T (2006) Similarity classifier with generalized mean applied to medical data. Comput Biol Med 36(9):1026–1040CrossRef
63.
go back to reference Sheikhpour R, Sarram MA, Sheikhpour R (2016) Particle swarm optimization for bandwidth determination and FS of kernel density estimation-based classifiers in diagnosis of breast cancer. Appl Soft Comput 40:113–131MATHCrossRef Sheikhpour R, Sarram MA, Sheikhpour R (2016) Particle swarm optimization for bandwidth determination and FS of kernel density estimation-based classifiers in diagnosis of breast cancer. Appl Soft Comput 40:113–131MATHCrossRef
64.
go back to reference Belciug S, Gorunescu F (2012) A hybrid neural network/genetic algorithm applied to breast cancer detection and recurrence. Expert Syst 30(3):243–254CrossRef Belciug S, Gorunescu F (2012) A hybrid neural network/genetic algorithm applied to breast cancer detection and recurrence. Expert Syst 30(3):243–254CrossRef
65.
go back to reference Salama GI, Abdelhalim MB, Zeid MAE (2012) Experimental comparison of classifiers for breast cancer diagnosis. In: 2012 Seventh International Conference on Computer Engineering & Systems (ICCES) Salama GI, Abdelhalim MB, Zeid MAE (2012) Experimental comparison of classifiers for breast cancer diagnosis. In: 2012 Seventh International Conference on Computer Engineering & Systems (ICCES)
66.
go back to reference Sridevi T, Murugan A (2014) A novel FS method for effective breast cancer diagnosis and prognosis. Int J Comput Appl 88(11):28–33 Sridevi T, Murugan A (2014) A novel FS method for effective breast cancer diagnosis and prognosis. Int J Comput Appl 88(11):28–33
67.
go back to reference Wang W, Yang L-J, Xie Y-T, An Y-W (2014) Edge detection of infrared image with CNN_DGA algorithm. Optik 125(1):464–467CrossRef Wang W, Yang L-J, Xie Y-T, An Y-W (2014) Edge detection of infrared image with CNN_DGA algorithm. Optik 125(1):464–467CrossRef
68.
go back to reference Liu X, Tang J (2014) Mass Classification in Mammograms Using Selected Geometry and Texture Features, and a New SVM-Based FS Method. IEEE Syst J 8(3):910–920CrossRef Liu X, Tang J (2014) Mass Classification in Mammograms Using Selected Geometry and Texture Features, and a New SVM-Based FS Method. IEEE Syst J 8(3):910–920CrossRef
69.
go back to reference Saki F, Tahmasbi A, Soltanian-Zadeh H, Shokouhi SB (2013) Fast opposite weight learning rules with application in breast cancer diagnosis. Comput Biol Med 43(1):32–41CrossRef Saki F, Tahmasbi A, Soltanian-Zadeh H, Shokouhi SB (2013) Fast opposite weight learning rules with application in breast cancer diagnosis. Comput Biol Med 43(1):32–41CrossRef
70.
go back to reference Buciu I, Gacsadi A (2011) Directional features for automatic tumor classification of mammogram images. Biomed Signal Process Control 6(4):370–378CrossRef Buciu I, Gacsadi A (2011) Directional features for automatic tumor classification of mammogram images. Biomed Signal Process Control 6(4):370–378CrossRef
71.
go back to reference Tahmasbi A, Saki F, Shokouhi SB (2011) Classification of benign and malignant masses based on Zernike moments. Comput Biol Med 41(8):726–735CrossRef Tahmasbi A, Saki F, Shokouhi SB (2011) Classification of benign and malignant masses based on Zernike moments. Comput Biol Med 41(8):726–735CrossRef
72.
go back to reference Tahmasbi A, Saki F, Shokouhi SB (2010) Mass diagnosis in mammographyimages using novel FTRD features. In: 2010 17th Iranian Conference of Biomedical Engineering (ICBME) Tahmasbi A, Saki F, Shokouhi SB (2010) Mass diagnosis in mammographyimages using novel FTRD features. In: 2010 17th Iranian Conference of Biomedical Engineering (ICBME)
73.
go back to reference Zhang Y, Tomuro N, Furst J, Raicu DS (2011) Building an ensemble system for diagnosing masses in mammograms. Int J Comput Assist Radiol Surg 7(2):323–329CrossRef Zhang Y, Tomuro N, Furst J, Raicu DS (2011) Building an ensemble system for diagnosing masses in mammograms. Int J Comput Assist Radiol Surg 7(2):323–329CrossRef
74.
go back to reference Verma B, Mcleod P, Klevansky A (2010) Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer. Expert Syst Appl 37(4):3344–3351CrossRef Verma B, Mcleod P, Klevansky A (2010) Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer. Expert Syst Appl 37(4):3344–3351CrossRef
75.
go back to reference Verma B, Mcleod P, Klevansky A (2009) A novel soft cluster neural network for the classification of suspicious areas in digital mammograms. Pattern Recogn 42(9):1845–1852MATHCrossRef Verma B, Mcleod P, Klevansky A (2009) A novel soft cluster neural network for the classification of suspicious areas in digital mammograms. Pattern Recogn 42(9):1845–1852MATHCrossRef
76.
go back to reference Rojas-Dominguez A, Nandi AK (2009) Development of tolerant features for characterization of masses in mammograms. Comput Biol Med 39(8):678–688CrossRef Rojas-Dominguez A, Nandi AK (2009) Development of tolerant features for characterization of masses in mammograms. Comput Biol Med 39(8):678–688CrossRef
77.
go back to reference Dheeba J, Selvi ST (2011) A swarm optimized neural network system for classification of microcalcification in mammograms. J Med Syst 36(5):3051–3061CrossRef Dheeba J, Selvi ST (2011) A swarm optimized neural network system for classification of microcalcification in mammograms. J Med Syst 36(5):3051–3061CrossRef
78.
go back to reference Dheeba J, Singh NA, Selvi ST (2014) Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. J Biomed Inform 49:45–52CrossRef Dheeba J, Singh NA, Selvi ST (2014) Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. J Biomed Inform 49:45–52CrossRef
79.
go back to reference Rouhi R, Jafari M, Kasaei S, Keshavarzian P (2015) Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 42(3):990–1002CrossRef Rouhi R, Jafari M, Kasaei S, Keshavarzian P (2015) Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 42(3):990–1002CrossRef
80.
go back to reference Rampun A, Morrow PJ, Scotney BW, Winder J (2017) Fully automated breast boundary and pectoral muscle segmentation in mammograms. Artif Intell Med 79:28–41CrossRef Rampun A, Morrow PJ, Scotney BW, Winder J (2017) Fully automated breast boundary and pectoral muscle segmentation in mammograms. Artif Intell Med 79:28–41CrossRef
81.
go back to reference Ribli D, Horváth A, Unger Z, Pollner P, Csabai I (2018) Detecting and classifying lesions in mammograms with Deep Learning, Sci Rep 8(1) Ribli D, Horváth A, Unger Z, Pollner P, Csabai I (2018) Detecting and classifying lesions in mammograms with Deep Learning, Sci Rep 8(1)
82.
go back to reference Kermani BG, White MW, Nagle HT (1995) Feature extraction by genetic algorithms for neural networks in breast cancer classification. In: Proceedings of the 17th annual conference on IEEE engineering in medicine and biology society (pp. 8311–832), vol 831 Kermani BG, White MW, Nagle HT (1995) Feature extraction by genetic algorithms for neural networks in breast cancer classification. In: Proceedings of the 17th annual conference on IEEE engineering in medicine and biology society (pp. 8311–832), vol 831
83.
go back to reference Verma B, Zhang P (2007) A novel neural-genetic algorithm to find the most significant combination of features in digital mammograms. Appl Soft Comput 7(2):612–625CrossRef Verma B, Zhang P (2007) A novel neural-genetic algorithm to find the most significant combination of features in digital mammograms. Appl Soft Comput 7(2):612–625CrossRef
84.
go back to reference Abbass HA (2002) An evolutionary ANNs approach for breast cancer diagnosis. Artif Intell Med 25(3):265–281CrossRef Abbass HA (2002) An evolutionary ANNs approach for breast cancer diagnosis. Artif Intell Med 25(3):265–281CrossRef
85.
go back to reference Dhanya R, Paul IR, Akula SS, Sivakumar M, Nair JJ (2020) F-test FS in Stacking ensemble model for breast cancer prediction. Proced Comput Sci 171:1561–1570CrossRef Dhanya R, Paul IR, Akula SS, Sivakumar M, Nair JJ (2020) F-test FS in Stacking ensemble model for breast cancer prediction. Proced Comput Sci 171:1561–1570CrossRef
86.
go back to reference Supriya M, Deepa AJ (2019) A novel approach for breast cancer prediction using optimized ANN classifier based on big data environment. Health care Manage Sci, 1-13 Supriya M, Deepa AJ (2019) A novel approach for breast cancer prediction using optimized ANN classifier based on big data environment. Health care Manage Sci, 1-13
90.
go back to reference Rebecca Sawyer Lee, Francisco Gimenez, Assaf Hoogi , Daniel Rubin (2016). Curated Breast Imaging Subset of DDSM . The Cancer Imaging Archive. Rebecca Sawyer Lee, Francisco Gimenez, Assaf Hoogi , Daniel Rubin (2016). Curated Breast Imaging Subset of DDSM . The Cancer Imaging Archive.
94.
go back to reference Dalwinder S, Birmohan S, Manpreet K (2020) Simultaneous feature weighting and parameter determination of Neural Networks using Ant Lion Optimization for the classification of breast cancer. Biocyber Biomed Eng 40(1):337–351 Dalwinder S, Birmohan S, Manpreet K (2020) Simultaneous feature weighting and parameter determination of Neural Networks using Ant Lion Optimization for the classification of breast cancer. Biocyber Biomed Eng 40(1):337–351
95.
go back to reference Derangula A, Edara SR (2021) Identification of optimized features using nature-inspired meta-herustics based optimizations in breast cancer detection. In: Materials Today: Proceedings Derangula A, Edara SR (2021) Identification of optimized features using nature-inspired meta-herustics based optimizations in breast cancer detection. In: Materials Today: Proceedings
96.
go back to reference Nayak M, Das S, Bhanja U, Senapati MR (2020) Elephant herding optimization technique based neural network for cancer prediction. Inf Med Unlock 21:100445CrossRef Nayak M, Das S, Bhanja U, Senapati MR (2020) Elephant herding optimization technique based neural network for cancer prediction. Inf Med Unlock 21:100445CrossRef
97.
go back to reference Ghanem WAHM, Jantan A (2018) A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptrons. Cogn Comput 10(6):1096–1134CrossRef Ghanem WAHM, Jantan A (2018) A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptrons. Cogn Comput 10(6):1096–1134CrossRef
Metadata
Title
A hybrid artificial bee colony with whale optimization algorithm for improved breast cancer diagnosis
Authors
Punitha Stephan
Thompson Stephan
Ramani Kannan
Ajith Abraham
Publication date
07-05-2021
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 20/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05997-6

Other articles of this Issue 20/2021

Neural Computing and Applications 20/2021 Go to the issue

Premium Partner