Skip to main content
Top

2023 | OriginalPaper | Chapter

18. A Hybrid-Attention-LSTM-Based Deep Convolutional Neural Network to Extract Modal Frequencies from Limited Data Using Transfer Learning

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Current computer video-based vibration modal analysis approaches typically decompose video frames into representations and then adjust them that allow to magnify motions to extract motion representations for vibration modal analysis. Their decomposition usually relies upon handcrafted designed kernels, such as the complex steerable kernels, which typically may not be optimally designed for the extraction of subtle motions specially in higher frequency domains. In this paper, optimal decomposition kernel is learned and designed directly from baseline dataset images using deep convolutional neural network (CNN) models. Each subpixel of an image obtained from a digital camera is included when computing the spatiotemporal information, which serves similar to an individual motion sensor to acquire the modal frequencies of a vibrating structure. A hybrid-attention-LSTM-based deep convolutional neural network architecture is developed to take advantage of attention and LSTM blocks to discover subtle motions from a specific source to visualize high resolution of dynamic properties of the structures in the existence of high amounts of noise. The idea of transfer learning is utilized to transfer the knowledge previously learned to new limited dataset. Transfer learning is used to take advantage of limited existing dataset to avoid underfitting in the training of the network, considering the current publicly available modal frequency datasets are insufficient to train a generalized network. The proposed deep learning architecture is designed in such a way that has capability of transferring the trained model from baseline dataset on a simple structure to a complicated structure using transfer learning perspective. After training, the model takes the video of a vibrating structure as input and outputs the fundamental modal frequencies. By showing reliable empirical results, the proposed model is autonomous, efficient, and accurate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sohn, H., et al.: A review of structural health monitoring literature: 1996–2001, p. 1. Los Alamos National Laboratory, Washington, DC (2003) Sohn, H., et al.: A review of structural health monitoring literature: 1996–2001, p. 1. Los Alamos National Laboratory, Washington, DC (2003)
2.
go back to reference Chang, P.C., Flatau, A., Liu, S.: Health monitoring of civil infrastructure. Struct. Health Monit. 2(3), 257–267 (2003)CrossRef Chang, P.C., Flatau, A., Liu, S.: Health monitoring of civil infrastructure. Struct. Health Monit. 2(3), 257–267 (2003)CrossRef
3.
go back to reference Worden, K., et al.: The fundamental axioms of structural health monitoring. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2082), 1639–1664 (2007) Worden, K., et al.: The fundamental axioms of structural health monitoring. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2082), 1639–1664 (2007)
4.
go back to reference Webb, G., Vardanega, P.J., Middleton, C.R.: Categories of SHM deployments: Technologies and capabilities. J. Bridge Eng. 20(11), 04014118 (2015)CrossRef Webb, G., Vardanega, P.J., Middleton, C.R.: Categories of SHM deployments: Technologies and capabilities. J. Bridge Eng. 20(11), 04014118 (2015)CrossRef
5.
go back to reference Montalvao, D., Maia, N.M.M., Ribeiro, A.M.R.: A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib. Dig. 38(4), 295–324 (2006)CrossRef Montalvao, D., Maia, N.M.M., Ribeiro, A.M.R.: A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib. Dig. 38(4), 295–324 (2006)CrossRef
6.
go back to reference Schubel, P., et al.: Review of structural health and cure monitoring techniques for large wind turbine blades. Renew. Energy. 51, 113–123 (2013)CrossRef Schubel, P., et al.: Review of structural health and cure monitoring techniques for large wind turbine blades. Renew. Energy. 51, 113–123 (2013)CrossRef
7.
go back to reference Goyal, D., Pabla, B.: The vibration monitoring methods and signal processing techniques for structural health monitoring: a review. Arch. Comput. Method Eng. 23(4), 585–594 (2016)MathSciNetCrossRef Goyal, D., Pabla, B.: The vibration monitoring methods and signal processing techniques for structural health monitoring: a review. Arch. Comput. Method Eng. 23(4), 585–594 (2016)MathSciNetCrossRef
8.
go back to reference Dizaji, M., Alipour, M., Harris, D.: Subsurface damage detection and structural health monitoring using digital image correlation and topology optimization. Eng. Struct. 230, 111712 (2021)CrossRef Dizaji, M., Alipour, M., Harris, D.: Subsurface damage detection and structural health monitoring using digital image correlation and topology optimization. Eng. Struct. 230, 111712 (2021)CrossRef
9.
go back to reference Dizaji, M.S., Alipour, M., Harris, D.: Leveraging full-field measurement from 3D digital image correlation for structural identification. Exp. Mech. 58(7), 1049–1066 (2018)CrossRef Dizaji, M.S., Alipour, M., Harris, D.: Leveraging full-field measurement from 3D digital image correlation for structural identification. Exp. Mech. 58(7), 1049–1066 (2018)CrossRef
10.
go back to reference Dizaji, M.S., Alipour, M., Harris, D.: Image-based tomography of structures to detect internal abnormalities using inverse approach. Exp. Tech., 1–16 (2021) Dizaji, M.S., Alipour, M., Harris, D.: Image-based tomography of structures to detect internal abnormalities using inverse approach. Exp. Tech., 1–16 (2021)
11.
go back to reference Dizaji, M.S., et al.: En“vision”ing a novel approach for structural health monitoring – a model for full-field structural identification using 3D digital image correlation. In The 8th international conference on structural health monitoring of intelligent infrastructure. Brisbane, Australia (2017) Dizaji, M.S., et al.: En“vision”ing a novel approach for structural health monitoring – a model for full-field structural identification using 3D digital image correlation. In The 8th international conference on structural health monitoring of intelligent infrastructure. Brisbane, Australia (2017)
12.
go back to reference Dizaji, M.S., et al.: Full-field non-destructive image-based diagnostics of a structure using 3D digital image correlation and laser scanner techniques. J. Civil Struct. Health Monit. 11(5), 1415–1428 (2021)MathSciNetCrossRef Dizaji, M.S., et al.: Full-field non-destructive image-based diagnostics of a structure using 3D digital image correlation and laser scanner techniques. J. Civil Struct. Health Monit. 11(5), 1415–1428 (2021)MathSciNetCrossRef
13.
go back to reference Schmidt, T., Tyson, J., Galanulis, K.: Full-field dynamic displacement and strain measurement-specific examples using advanced 3D image correlation. Photogrammetry: Part II. Exp. Tech. 27(4), 22–26 (2003)CrossRef Schmidt, T., Tyson, J., Galanulis, K.: Full-field dynamic displacement and strain measurement-specific examples using advanced 3D image correlation. Photogrammetry: Part II. Exp. Tech. 27(4), 22–26 (2003)CrossRef
14.
go back to reference Kohut, P., et al.: Noncontact measurements for vibration-based SHM and NDE. Hindawi (2019)CrossRef Kohut, P., et al.: Noncontact measurements for vibration-based SHM and NDE. Hindawi (2019)CrossRef
15.
go back to reference Stanbridge, A.B., Martarelli, M., Ewins, D.J.: Measuring area vibration mode shapes with a continuous-scan LDV. Measurement. 35(2), 181–189 (2004)CrossRef Stanbridge, A.B., Martarelli, M., Ewins, D.J.: Measuring area vibration mode shapes with a continuous-scan LDV. Measurement. 35(2), 181–189 (2004)CrossRef
16.
go back to reference Huntley, J.M.: Automated fringe pattern analysis in experimental mechanics: a review. J. Strain Anal. Eng. Des. 33(2), 105–125 (1998)CrossRef Huntley, J.M.: Automated fringe pattern analysis in experimental mechanics: a review. J. Strain Anal. Eng. Des. 33(2), 105–125 (1998)CrossRef
17.
go back to reference Southwick, M., Mao, Z., Niezrecki, C.: A complex convolution kernel-based optical displacement sensor. IEEE Sens. J. 20(17), 9753–9762 (2020)CrossRef Southwick, M., Mao, Z., Niezrecki, C.: A complex convolution kernel-based optical displacement sensor. IEEE Sens. J. 20(17), 9753–9762 (2020)CrossRef
19.
go back to reference Koushik, J.: Understanding convolutional neural networks. arXiv preprint arXiv:1605.09081 (2016) Koushik, J.: Understanding convolutional neural networks. arXiv preprint arXiv:1605.09081 (2016)
20.
go back to reference Ketkar, N.: Convolutional neural networks. In: Deep learning with Python, pp. 63–78. Springer (2017)CrossRef Ketkar, N.: Convolutional neural networks. In: Deep learning with Python, pp. 63–78. Springer (2017)CrossRef
21.
go back to reference O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)
22.
go back to reference Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM international conference on Multimedia (2015) Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM international conference on Multimedia (2015)
23.
go back to reference Dizaji, M.S., Harris, D.K.: 3D InspectionNet: a deep 3D convolutional neural networks based approach for 3D defect detection on concrete columns. In: Nondestructive characterization and monitoring of advanced materials, Aerospace, civil infrastructure, and transportation XIII. International Society for Optics and Photonics (2019) Dizaji, M.S., Harris, D.K.: 3D InspectionNet: a deep 3D convolutional neural networks based approach for 3D defect detection on concrete columns. In: Nondestructive characterization and monitoring of advanced materials, Aerospace, civil infrastructure, and transportation XIII. International Society for Optics and Photonics (2019)
24.
go back to reference Yang, R., et al.: CNN-LSTM deep learning architecture for computer vision-based modal frequency detection. Mech. Syst. Signal Process. 144, 106885 (2020)CrossRef Yang, R., et al.: CNN-LSTM deep learning architecture for computer vision-based modal frequency detection. Mech. Syst. Signal Process. 144, 106885 (2020)CrossRef
25.
go back to reference Poozesh, P., et al.: Feasibility of extracting operating shapes using phase-based motion magnification technique and stereo-photogrammetry. J. Sound Vib. 407, 350–366 (2017)CrossRef Poozesh, P., et al.: Feasibility of extracting operating shapes using phase-based motion magnification technique and stereo-photogrammetry. J. Sound Vib. 407, 350–366 (2017)CrossRef
26.
go back to reference Sarrafi, A., et al.: Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification. J. Sound Vib. 421, 300–318 (2018)CrossRef Sarrafi, A., et al.: Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification. J. Sound Vib. 421, 300–318 (2018)CrossRef
Metadata
Title
A Hybrid-Attention-LSTM-Based Deep Convolutional Neural Network to Extract Modal Frequencies from Limited Data Using Transfer Learning
Authors
Mehrdad Shafiei Dizaji
Zhu Mao
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-04098-6_18

Premium Partners