Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-07-2014 | Methodologies and Application | Issue 7/2014

Soft Computing 7/2014

A hybrid genetic algorithm for feature subset selection in rough set theory

Journal:
Soft Computing > Issue 7/2014
Author:
Si-Yuan Jing
Important notes
Communicated by V. Loia.

Abstract

Rough set theory has been proven to be an effective tool to feature subset selection. Current research usually employ hill-climbing as search strategy to select feature subset. However, they are inadequate to find the optimal feature subset since no heuristic can guarantee optimality. Due to this, many researchers study stochastic methods. Since previous works of combination of genetic algorithm and rough set theory do not show competitive performance compared with some other stochastic methods, we propose a hybrid genetic algorithm for feature subset selection in this paper, called HGARSTAR. Different from previous works, HGARSTAR embeds a novel local search operation based on rough set theory to fine-tune the search. This aims to enhance GA’s intensification ability. Moreover, all candidates (i.e. feature subsets) generated in evolutionary process are enforced to include core features to accelerate convergence. To verify the proposed algorithm, experiments are performed on some standard UCI datasets. Experimental results demonstrate the efficiency of our algorithm.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2014

Soft Computing 7/2014 Go to the issue

Methodologies and Application

Improved RM-MEDA with local learning

Premium Partner

    Image Credits