Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

23-06-2020 | Original Article | Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020

A hybrid method of recurrent neural network and graph neural network for next-period prescription prediction

Journal:
International Journal of Machine Learning and Cybernetics > Issue 12/2020
Authors:
Sicen Liu, Tao Li, Haoyang Ding, Buzhou Tang, Xiaolong Wang, Qingcai Chen, Jun Yan, Yi Zhou
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Electronic health records (EHRs) have been widely used to help physicians to make decisions by predicting medical events such as diseases, prescriptions, outcomes, and so on. How to represent patient longitudinal medical data is the key to making these predictions. Recurrent neural network (RNN) is a popular model for patient longitudinal medical data representation from the view of patient status sequences, but it cannot represent complex interactions among different types of medical information, i.e., temporal medical event graphs, which can be represented by graph neural network (GNN). In this paper, we propose a hybrid method of RNN and GNN, called RGNN, for next-period prescription prediction from two views, where RNN is used to represent patient status sequences, and GNN is used to represent temporal medical event graphs. Experiments conducted on the public MIMIC-III ICU data show that the proposed method is effective for next-period prescription prediction, and RNN and GNN are mutually complementary.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020 Go to the issue