Skip to main content
Top

2014 | OriginalPaper | Chapter

A Hybrid Multiscale Approach in Cancer Modelling and Treatment Prediction

Authors : Gibin Powathil, Mark A. J. Chaplain

Published in: Mathematical Oncology 2013

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cancer is a complex multiscale disease involving inter-related processes across a wide range of temporal and spatial scales. Multiscale mathematical models can help in studying cancer progression and serve as an in silico test base for comparing and optimizing various multi-modality anticancer treatment protocols. Here, we discuss one such hybrid multiscale approach, interlinking individual cell behavior with the macroscopic tissue scale. Using this technique, we study the spatio-temporal dynamics of individual cells and their interactions with the tumor microenvironment. At the intracellular level, the internal cell-cycle mechanism is modelled using a system of coupled ordinary differential equations, which determine cellular growth dynamics for each individual cell. The evolution of these individual cancer cells are modelled using a cellular automaton approach. Moreover, we have also incorporated the effects of oxygen distribution into this multiscale model as it has been shown to affect the internal cell-cycle dynamics of the cancer cells. The hybrid multiscale model is then used to study the effects of cell-cycle-specific chemotherapeutic drugs, alone and in combination with radiotherapy, with a long-term goal of predicting an optimal multimodality treatment plan for individual patients.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Z. Agur, R. Hassin, S. Levy, Optimizing chemotherapy scheduling using local search heuristics. Operat. Res. 54(5), 829–846 (2006)CrossRefMATH Z. Agur, R. Hassin, S. Levy, Optimizing chemotherapy scheduling using local search heuristics. Operat. Res. 54(5), 829–846 (2006)CrossRefMATH
2.
go back to reference M. Al-Tameemi, M. Chaplain, A. d’Onofrio, Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol. Direct 7, 31 (2012) M. Al-Tameemi, M. Chaplain, A. d’Onofrio, Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol. Direct 7, 31 (2012)
3.
go back to reference T. Alarcon, H.M. Byrne, P.K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)MathSciNetCrossRef T. Alarcon, H.M. Byrne, P.K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)MathSciNetCrossRef
4.
go back to reference T. Alarcon, H.M. Byrne, P.K. Maini, A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. Theor. Biol. 229, 395–411 (2004)MathSciNetCrossRef T. Alarcon, H.M. Byrne, P.K. Maini, A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. Theor. Biol. 229, 395–411 (2004)MathSciNetCrossRef
6.
go back to reference Alper, T., Howard-Flanders, P.: Role of oxygen in modifying the radiosensitivity of E. coli B. Nature 178(4540), 978–979 (1956) Alper, T., Howard-Flanders, P.: Role of oxygen in modifying the radiosensitivity of E. coli B. Nature 178(4540), 978–979 (1956)
7.
go back to reference A. Altinok, F. Levi, A. Goldbeter, A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv. Drug Deliv. Rev. 59, 1036–1053 (2007)CrossRef A. Altinok, F. Levi, A. Goldbeter, A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv. Drug Deliv. Rev. 59, 1036–1053 (2007)CrossRef
8.
go back to reference V. Andasari, A. Gerisch, G. Lolas, A.P. South, M.A. Chaplain, Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63(1), 141–171 (2011)MathSciNetCrossRefMATH V. Andasari, A. Gerisch, G. Lolas, A.P. South, M.A. Chaplain, Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63(1), 141–171 (2011)MathSciNetCrossRefMATH
9.
go back to reference A.R. Anderson, M.A. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)CrossRefMATH A.R. Anderson, M.A. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)CrossRefMATH
10.
go back to reference J.C. Bailar, H.L. Gornik, Cancer undefeated. N. Engl. J. Med. 336, 1569–1574 (1997)CrossRef J.C. Bailar, H.L. Gornik, Cancer undefeated. N. Engl. J. Med. 336, 1569–1574 (1997)CrossRef
11.
go back to reference F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, J.P. Boissel, E. Grenier, J.P. Flandrois, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol. 260(4), 545–562 (2009)MathSciNetCrossRef F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, J.P. Boissel, E. Grenier, J.P. Flandrois, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol. 260(4), 545–562 (2009)MathSciNetCrossRef
12.
go back to reference H.M. Byrne, Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10, 221–230 (2010)CrossRef H.M. Byrne, Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10, 221–230 (2010)CrossRef
13.
go back to reference H.M. Byrne, M.A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130(2), 151–181 (1995)CrossRefMATH H.M. Byrne, M.A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130(2), 151–181 (1995)CrossRefMATH
14.
go back to reference H.M. Byrne, M.A. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135(2), 187–216 (1996)CrossRefMATH H.M. Byrne, M.A. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135(2), 187–216 (1996)CrossRefMATH
15.
go back to reference M. Chaplain, A. Anderson, Mathematical modelling of tumour-induced angiogenesis: network growth and structure. Cancer Treat. Res. 117, 51–75 (2004)CrossRef M. Chaplain, A. Anderson, Mathematical modelling of tumour-induced angiogenesis: network growth and structure. Cancer Treat. Res. 117, 51–75 (2004)CrossRef
16.
go back to reference M.A. Chaudhry, Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases. Cancer Cell. Int. 7, 15 (2007)CrossRef M.A. Chaudhry, Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases. Cancer Cell. Int. 7, 15 (2007)CrossRef
17.
go back to reference J. Clairambault, A step toward optimization of cancer therapeutics. Physiologically based modeling of circadian control on cell proliferation. IEEE Eng. Med. Biol. Mag. 27, 20–24 (2008) J. Clairambault, A step toward optimization of cancer therapeutics. Physiologically based modeling of circadian control on cell proliferation. IEEE Eng. Med. Biol. Mag. 27, 20–24 (2008)
18.
go back to reference A. Dasu, I. Toma-Dasu, M. Karlsson, Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys. Med. Biol. 48, 2829–2842 (2003)CrossRef A. Dasu, I. Toma-Dasu, M. Karlsson, Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys. Med. Biol. 48, 2829–2842 (2003)CrossRef
19.
go back to reference N.E. Deakin, M.A. Chaplain, Mathematical modeling of cancer invasion: the role of membrane-bound matrix metalloproteinases. Front. Oncol. 3, 70 (2013)CrossRef N.E. Deakin, M.A. Chaplain, Mathematical modeling of cancer invasion: the role of membrane-bound matrix metalloproteinases. Front. Oncol. 3, 70 (2013)CrossRef
20.
go back to reference T.S. Deisboeck, Z. Wang, P. Macklin, V. Cristini, Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13, 127–155 (2011)CrossRef T.S. Deisboeck, Z. Wang, P. Macklin, V. Cristini, Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13, 127–155 (2011)CrossRef
21.
go back to reference S. Dormann, A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol. (Gedrukt) 2, 393–406 (2002) S. Dormann, A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol. (Gedrukt) 2, 393–406 (2002)
22.
go back to reference H. Enderling, A.R. Anderson, M.A. Chaplain, A.J. Munro, J.S. Vaidya, Mathematical modelling of radiotherapy strategies for early breast cancer. J. Theor. Biol. 241(1), 158–171 (2006)MathSciNetCrossRef H. Enderling, A.R. Anderson, M.A. Chaplain, A.J. Munro, J.S. Vaidya, Mathematical modelling of radiotherapy strategies for early breast cancer. J. Theor. Biol. 241(1), 158–171 (2006)MathSciNetCrossRef
23.
go back to reference K. Fister, J. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math. 60, 1059–1072 (2000)MathSciNetCrossRefMATH K. Fister, J. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math. 60, 1059–1072 (2000)MathSciNetCrossRefMATH
24.
go back to reference H.B Frieboes, M.E. Edgerton, J.P. Fruehauf, F.R. Rose, L.K. Worrall, R.A. Gatenby, M. Ferrari, V. Cristini, Prediction of drug response in breast cancer using integrative experimental/computational modeling. Cancer Res. 69, 4484–4492 (2009) H.B Frieboes, M.E. Edgerton, J.P. Fruehauf, F.R. Rose, L.K. Worrall, R.A. Gatenby, M. Ferrari, V. Cristini, Prediction of drug response in breast cancer using integrative experimental/computational modeling. Cancer Res. 69, 4484–4492 (2009)
25.
go back to reference K. Fu, Biological basis for the interaction of chemotherapeutic agents and radiation therapy. Cancer 55(S9), 2123–2130 (1985)CrossRef K. Fu, Biological basis for the interaction of chemotherapeutic agents and radiation therapy. Cancer 55(S9), 2123–2130 (1985)CrossRef
26.
go back to reference C. Gerard, A. Goldbeter, Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc. Natl. Acad. Sci. U.S.A. 106, 21,643–21,648 (2009)CrossRef C. Gerard, A. Goldbeter, Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc. Natl. Acad. Sci. U.S.A. 106, 21,643–21,648 (2009)CrossRef
27.
go back to reference A. Gerisch, M.A. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250(4), 684–704 (2008)MathSciNetCrossRef A. Gerisch, M.A. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250(4), 684–704 (2008)MathSciNetCrossRef
28.
go back to reference P. Gerlee, A.R. Anderson, An evolutionary hybrid cellular automaton model of solid tumour growth. J. Theor. Biol. 246, 583–603 (2007)MathSciNetCrossRef P. Gerlee, A.R. Anderson, An evolutionary hybrid cellular automaton model of solid tumour growth. J. Theor. Biol. 246, 583–603 (2007)MathSciNetCrossRef
29.
go back to reference N. Goda, H.E. Ryan, B. Khadivi, McNulty, W., Rickert, R.C., Johnson, R.S.: Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol. Cell. Biol. 23, 359–369 (2003) N. Goda, H.E. Ryan, B. Khadivi, McNulty, W., Rickert, R.C., Johnson, R.S.: Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol. Cell. Biol. 23, 359–369 (2003)
30.
go back to reference A. Goldbeter, A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. U.S.A. 88, 9107–9111 (1991)CrossRef A. Goldbeter, A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. U.S.A. 88, 9107–9111 (1991)CrossRef
31.
go back to reference M. Guerrero, X.A. Li, Analysis of a large number of clinical studies for breast cancer radiotherapy: estimation of radiobiological parameters for treatment planning. Phys. Med. Biol. 48(20), 3307–3326 (2003)CrossRef M. Guerrero, X.A. Li, Analysis of a large number of clinical studies for breast cancer radiotherapy: estimation of radiobiological parameters for treatment planning. Phys. Med. Biol. 48(20), 3307–3326 (2003)CrossRef
32.
go back to reference S. Gupta, T. Koru-Sengul, S.M. Arnold, G.R. Devi, M. Mohiuddin, M.M. Ahmed, Low-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cells. Mol. Cancer Ther. 10(2), 292–302 (2011)CrossRef S. Gupta, T. Koru-Sengul, S.M. Arnold, G.R. Devi, M. Mohiuddin, M.M. Ahmed, Low-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cells. Mol. Cancer Ther. 10(2), 292–302 (2011)CrossRef
33.
go back to reference C. Hennequin, V. Favaudon, Biological basis for chemo-radiotherapy interactions. European J. Cancer 38(2), 223–230 (2002)CrossRef C. Hennequin, V. Favaudon, Biological basis for chemo-radiotherapy interactions. European J. Cancer 38(2), 223–230 (2002)CrossRef
34.
go back to reference C. Hennequin, N. Giocanti, V. Favaudon, Interaction of ionizing radiation with paclitaxel (Taxol) and docetaxel (Taxotere) in HeLa and SQ20B cells. Cancer Res. 56(8), 1842–1850 (1996) C. Hennequin, N. Giocanti, V. Favaudon, Interaction of ionizing radiation with paclitaxel (Taxol) and docetaxel (Taxotere) in HeLa and SQ20B cells. Cancer Res. 56(8), 1842–1850 (1996)
35.
go back to reference A.R. Kansal, S. Torquato, G.R. Harsh IV, E.A. Chiocca, T.S. Deisboeck, Cellular automaton of idealized brain tumor growth dynamics. BioSystems 55, 119–127 (2000)CrossRef A.R. Kansal, S. Torquato, G.R. Harsh IV, E.A. Chiocca, T.S. Deisboeck, Cellular automaton of idealized brain tumor growth dynamics. BioSystems 55, 119–127 (2000)CrossRef
36.
go back to reference M.A. Konerding, W. Malkusch, B. Klapthor, C. van Ackern, E. Fait, S.A. Hill, C. Parkins, D.J. Chaplin, M. Presta, J. Denekamp, Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br. J. Cancer 80, 724–732 (1999)CrossRef M.A. Konerding, W. Malkusch, B. Klapthor, C. van Ackern, E. Fait, S.A. Hill, C. Parkins, D.J. Chaplin, M. Presta, J. Denekamp, Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br. J. Cancer 80, 724–732 (1999)CrossRef
37.
go back to reference F. Levi, A. Okyar, Circadian clocks and drug delivery systems: impact and opportunities in chronotherapeutics. Expert Opin. Drug Deliv. 8(12), 1535–1541 (2011)CrossRef F. Levi, A. Okyar, Circadian clocks and drug delivery systems: impact and opportunities in chronotherapeutics. Expert Opin. Drug Deliv. 8(12), 1535–1541 (2011)CrossRef
38.
go back to reference F. Levi, A. Okyar, S. Dulong, P.F. Innominato, J. Clairambault, Circadian timing in cancer treatments. Annu. Rev. Pharmacol. Toxicol. 50, 377–421 (2010)CrossRef F. Levi, A. Okyar, S. Dulong, P.F. Innominato, J. Clairambault, Circadian timing in cancer treatments. Annu. Rev. Pharmacol. Toxicol. 50, 377–421 (2010)CrossRef
39.
go back to reference W. Liu, T. Hillen, H. Freedman, A mathematical model for m-phase specific chemotherapy including the g0-phase and immunoresponse. Math. Biosci. Eng. 4(2), 239 (2007) W. Liu, T. Hillen, H. Freedman, A mathematical model for m-phase specific chemotherapy including the g0-phase and immunoresponse. Math. Biosci. Eng. 4(2), 239 (2007)
40.
go back to reference J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, R1–R9 (2010)MathSciNetCrossRefMATH J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, R1–R9 (2010)MathSciNetCrossRefMATH
41.
go back to reference P. Macklin, S. McDougall, A.R. Anderson, M.A. Chaplain, V. Cristini, J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58(4–5), 765–798 (2009)MathSciNetCrossRef P. Macklin, S. McDougall, A.R. Anderson, M.A. Chaplain, V. Cristini, J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58(4–5), 765–798 (2009)MathSciNetCrossRef
42.
go back to reference A. Maity, McKenna, W.G., Muschel, R.J.: The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother. Oncol. 31(1), 1–13 (1994) A. Maity, McKenna, W.G., Muschel, R.J.: The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother. Oncol. 31(1), 1–13 (1994)
43.
go back to reference A. Matzavinos, M.A. Chaplain, V.A. Kuznetsov, Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004)CrossRefMATH A. Matzavinos, M.A. Chaplain, V.A. Kuznetsov, Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004)CrossRefMATH
44.
go back to reference Matzavinos, A., Kao, C.Y., Green, J.E., Sutradhar, A., Miller, M., Friedman, A.: Modeling oxygen transport in surgical tissue transfer. Proc. Natl. Acad. Sci. U.S.A. 106, 12,091–12,096 (2009) Matzavinos, A., Kao, C.Y., Green, J.E., Sutradhar, A., Miller, M., Friedman, A.: Modeling oxygen transport in surgical tissue transfer. Proc. Natl. Acad. Sci. U.S.A. 106, 12,091–12,096 (2009)
45.
go back to reference S.R. McDougall, A.R. Anderson, M.A. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3), 564–589 (2006)MathSciNetCrossRef S.R. McDougall, A.R. Anderson, M.A. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3), 564–589 (2006)MathSciNetCrossRef
46.
go back to reference H.B. Mistry, D.E. MacCallum, R.C. Jackson, M.A. Chaplain, F.A. Davidson, Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase. Proc. Natl. Acad. Sci. U.S.A. 105(51), 20,215–20,220 (2008)CrossRef H.B. Mistry, D.E. MacCallum, R.C. Jackson, M.A. Chaplain, F.A. Davidson, Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase. Proc. Natl. Acad. Sci. U.S.A. 105(51), 20,215–20,220 (2008)CrossRef
47.
go back to reference B. Novak, J.J. Tyson, Modelling the controls of the eukaryotic cell cycle. Biochem. Soc. Trans. 31, 1526–1529 (2003)CrossRef B. Novak, J.J. Tyson, Modelling the controls of the eukaryotic cell cycle. Biochem. Soc. Trans. 31, 1526–1529 (2003)CrossRef
48.
go back to reference B. Novak, J.J. Tyson, A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230, 563–579 (2004)MathSciNetCrossRef B. Novak, J.J. Tyson, A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230, 563–579 (2004)MathSciNetCrossRef
49.
go back to reference M.R. Owen, T. Alarcon, P.K. Maini, H.M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009)MathSciNetCrossRef M.R. Owen, T. Alarcon, P.K. Maini, H.M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009)MathSciNetCrossRef
50.
go back to reference M.R. Owen, H.M. Byrne, C.E. Lewis, Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theor. Biol. 226, 377–391 (2004)MathSciNetCrossRef M.R. Owen, H.M. Byrne, C.E. Lewis, Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theor. Biol. 226, 377–391 (2004)MathSciNetCrossRef
52.
go back to reference A.A. Patel, E.T. Gawlinski, S.K. Lemieux, R.A. Gatenby, A cellular automaton model of early tumor growth and invasion. J. Theor. Biol. 213, 315–331 (2001)MathSciNetCrossRef A.A. Patel, E.T. Gawlinski, S.K. Lemieux, R.A. Gatenby, A cellular automaton model of early tumor growth and invasion. J. Theor. Biol. 213, 315–331 (2001)MathSciNetCrossRef
53.
go back to reference Pawlik, T.M., Keyomarsi, K.: Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59(4), 928–942 (2004)CrossRef Pawlik, T.M., Keyomarsi, K.: Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59(4), 928–942 (2004)CrossRef
54.
go back to reference Perfahl, H., Byrne, H.M., Chen, T., Estrella, V., Alarcon, T., Lapin, A., Gatenby, R.A., Gillies, R.J., Lloyd, M.C., Maini, P.K., Reuss, M., Owen, M.R.: Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS ONE 6, e14,790 (2011)CrossRef Perfahl, H., Byrne, H.M., Chen, T., Estrella, V., Alarcon, T., Lapin, A., Gatenby, R.A., Gillies, R.J., Lloyd, M.C., Maini, P.K., Reuss, M., Owen, M.R.: Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS ONE 6, e14,790 (2011)CrossRef
55.
go back to reference G. Powathil, M. Kohandel, M. Milosevic, S. Sivaloganathan, Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies. Comput. Math. Meth. Med. 2012, 410,602 (2012)CrossRef G. Powathil, M. Kohandel, M. Milosevic, S. Sivaloganathan, Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies. Comput. Math. Meth. Med. 2012, 410,602 (2012)CrossRef
56.
go back to reference G.G. Powathil, D.J.A. Adamson, M.A.J. Chaplain, Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: Clinical insights from a computational model. PLOS Computational Biology (To appear) (2013). DOI 10.1371/journal.pcbi.1003120 G.G. Powathil, D.J.A. Adamson, M.A.J. Chaplain, Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: Clinical insights from a computational model. PLOS Computational Biology (To appear) (2013). DOI 10.1371/journal.pcbi.1003120
57.
go back to reference G.G. Powathil, K.E. Gordon, L.A., Hill, M.A. Chaplain, Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: Biological insights from a hybrid multiscale cellular automaton model. J. Theor. Biol. 308, 1–9 (2012) G.G. Powathil, K.E. Gordon, L.A., Hill, M.A. Chaplain, Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: Biological insights from a hybrid multiscale cellular automaton model. J. Theor. Biol. 308, 1–9 (2012)
58.
go back to reference I. Ramis-Conde, M.A. Chaplain, A.R. Anderson, D. Drasdo, Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys. Biol. 6(1), 016,008 (2009) I. Ramis-Conde, M.A. Chaplain, A.R. Anderson, D. Drasdo, Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys. Biol. 6(1), 016,008 (2009)
59.
go back to reference I. Ramis-Conde, D. Drasdo, A.R. Anderson, M.A. Chaplain, Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys. J. 95(1), 155–165 (2008)CrossRef I. Ramis-Conde, D. Drasdo, A.R. Anderson, M.A. Chaplain, Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys. J. 95(1), 155–165 (2008)CrossRef
60.
go back to reference B. Ribba, T. Alarcon, K. Marron, P. Maini, Z. Agur, The Use of Hybrid Cellular Automaton Models for Improving Cancer Therapy. Lect. Notes Comput. Sci 3305, 444–453 (2004)CrossRef B. Ribba, T. Alarcon, K. Marron, P. Maini, Z. Agur, The Use of Hybrid Cellular Automaton Models for Improving Cancer Therapy. Lect. Notes Comput. Sci 3305, 444–453 (2004)CrossRef
61.
go back to reference B. Ribba, T. Colin, S. Schnell, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor. Biol. Med. Model. 3, 7 (2006)CrossRef B. Ribba, T. Colin, S. Schnell, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor. Biol. Med. Model. 3, 7 (2006)CrossRef
62.
go back to reference B. Ribba, K. Marron, Z. Agur, T. Alarcon, P.K. Maini, A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: investigation of the current protocol through theoretical modelling results. Bull. Math. Biol. 67(1), 79–99 (2005)MathSciNetCrossRef B. Ribba, K. Marron, Z. Agur, T. Alarcon, P.K. Maini, A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: investigation of the current protocol through theoretical modelling results. Bull. Math. Biol. 67(1), 79–99 (2005)MathSciNetCrossRef
63.
go back to reference B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier, J.P. Boissel, A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J. Theor. Biol. 243(4), 532–541 (2006)MathSciNetCrossRef B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier, J.P. Boissel, A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J. Theor. Biol. 243(4), 532–541 (2006)MathSciNetCrossRef
64.
go back to reference M. Richard, K. Kirkby, R. Webb, N. Kirkby, A mathematical model of response of cells to radiation. Nuclear Instruments and Meth. Phy. Res. Section B: Beam Interactions Mater. Atoms 255(1), 18–22 (2007)CrossRef M. Richard, K. Kirkby, R. Webb, N. Kirkby, A mathematical model of response of cells to radiation. Nuclear Instruments and Meth. Phy. Res. Section B: Beam Interactions Mater. Atoms 255(1), 18–22 (2007)CrossRef
65.
go back to reference R.K. Sachs, P. Hahnfeld, D.J. Brenner, The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int. J. Radiat. Biol. 72(4), 351–374 (1997)CrossRef R.K. Sachs, P. Hahnfeld, D.J. Brenner, The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int. J. Radiat. Biol. 72(4), 351–374 (1997)CrossRef
66.
go back to reference G.K. Schwartz, M.A. Shah, Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408–9421 (2005)CrossRef G.K. Schwartz, M.A. Shah, Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408–9421 (2005)CrossRef
67.
go back to reference G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, F. Bussolino, Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)CrossRef G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, F. Bussolino, Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)CrossRef
68.
go back to reference E. Shochat, D. Hart, Z. Agur, Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols. Math. Models Meth. Appl. Sci. 9(4), 599–615 (1999)CrossRefMATH E. Shochat, D. Hart, Z. Agur, Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols. Math. Models Meth. Appl. Sci. 9(4), 599–615 (1999)CrossRefMATH
69.
go back to reference M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A. Chaplain, Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. J. Theor. Biol. 273(1), 15–31 (2011)MathSciNetCrossRef M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A. Chaplain, Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. J. Theor. Biol. 273(1), 15–31 (2011)MathSciNetCrossRef
70.
go back to reference M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A. Chaplain, Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53-Mdm2 pathways: insights from spatio-temporal modelling. Bull. Math. Biol. 74(7), 1531–1579 (2012)MathSciNetCrossRefMATH M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A. Chaplain, Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53-Mdm2 pathways: insights from spatio-temporal modelling. Bull. Math. Biol. 74(7), 1531–1579 (2012)MathSciNetCrossRefMATH
71.
go back to reference I. Tannock, R. Hill, R. Bristow, L. Harrington, Basic Science of Oncology (MacGraw Hill, Boston 2005) I. Tannock, R. Hill, R. Bristow, L. Harrington, Basic Science of Oncology (MacGraw Hill, Boston 2005)
72.
go back to reference I. Turesson, J. Carlsson, A. Brahme, B. Glimelius, B. Zackrisson, B. Stenerlow, Biological response to radiation therapy. Acta Oncol 42(2), 92–106 (2003)CrossRef I. Turesson, J. Carlsson, A. Brahme, B. Glimelius, B. Zackrisson, B. Stenerlow, Biological response to radiation therapy. Acta Oncol 42(2), 92–106 (2003)CrossRef
73.
go back to reference S. Turner, J.A. Sherratt, Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216, 85–100 (2002)MathSciNetCrossRef S. Turner, J.A. Sherratt, Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216, 85–100 (2002)MathSciNetCrossRef
74.
go back to reference J.J. Tyson, B. Novak, Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263 (2001)CrossRef J.J. Tyson, B. Novak, Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263 (2001)CrossRef
75.
go back to reference B.G. Wouters, J.M. Brown, Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy. Radiat. Res. 147(5), 541–550 (1997)CrossRef B.G. Wouters, J.M. Brown, Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy. Radiat. Res. 147(5), 541–550 (1997)CrossRef
76.
go back to reference M. Wu, H.B. Frieboes, S.R. McDougall, M.A. Chaplain, V. Cristini, J. Lowengrub, The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J. Theor. Biol. 320, 131–151 (2013)MathSciNetCrossRef M. Wu, H.B. Frieboes, S.R. McDougall, M.A. Chaplain, V. Cristini, J. Lowengrub, The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J. Theor. Biol. 320, 131–151 (2013)MathSciNetCrossRef
77.
go back to reference L. Zhang, Z. Wang, J.A. Sagotsky, T.S. Deisboeck, Multiscale agent-based cancer modeling. J. Math. Biol. 58(4–5), 545–559 (2009)MathSciNetCrossRef L. Zhang, Z. Wang, J.A. Sagotsky, T.S. Deisboeck, Multiscale agent-based cancer modeling. J. Math. Biol. 58(4–5), 545–559 (2009)MathSciNetCrossRef
Metadata
Title
A Hybrid Multiscale Approach in Cancer Modelling and Treatment Prediction
Authors
Gibin Powathil
Mark A. J. Chaplain
Copyright Year
2014
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-0458-7_8

Premium Partner