Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

19-11-2019 | Methodologies and Application | Issue 13/2020

Soft Computing 13/2020

A hybrid OpenFlow with intelligent detection and prediction models for preventing BGP path hijack on SDN

Journal:
Soft Computing > Issue 13/2020
Authors:
R. Pradeepa, M. Pushpalatha
Important notes
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The Border Gateway Protocol (BGP) is a path vector protocol whose fundamental aim is to exchange the information across the Internet, which directs data between autonomous systems. The significant drawback of the BGP is that it does not address security; path hijacking is one of the top-rated cyber hijacks. Existing methods such as sBGP, soBGP and PGBGP have focused more on detecting path hijacking rather than preventing. Hence, we propose an intelligent model to detect abnormal behavior of a network and to predict and prevent BGP path hijacking (DPPBGP) in software-defined networks. The main objective of our proposed model is to reduce detection time and the controller workload with SFlow-integrated OpenFlow. Three modules of our model are as follows: (1) Based on the abnormal behavior of the network, we evaluated the statistics. We use the statistic features in the cumulative sum abnormal detection algorithm to detect abnormal behavior and flows proficiently and perfectly with less detection time. (2) An intelligent machine learning approach knows as a Pattern Sequence Forecasting algorithm is used to forecast the behavior of the network. (3) After the detection or the forecast of abnormality, path hijack is prevented by killing the appropriate PID based on SFlow analyzer. Simulation results show how large the network of this model can perform accurately and effectively.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 13/2020

Soft Computing 13/2020 Go to the issue

Premium Partner

    Image Credits