Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

30-07-2020 | Issue 11/2020

Water Resources Management 11/2020

A Hydrologic Uncertainty Processor Using Linear Derivation in the Normal Quantile Transform Space

Journal:
Water Resources Management > Issue 11/2020
Authors:
Jianzhong Zhou, Kuaile Feng, Yi Liu, Chao Zhou, Feifei He, Guangbiao Liu, Zhongzheng He
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Hydrological forecasting plays an important role in basin flood control systems, and the uncertainty of hydrological forecasting is helpful to reveal basin hydrological characteristics and provide support to decision makers in formulating water resources management schemes. The hydrologic uncertainty processor (HUP) has been widely employed in hydrological uncertainty prediction. However, in the HUP normal quantile transform (NQT) space, the posteriori distribution is derived from the Bayesian theory. This increases the difficulty of the theory and calculations. In this paper, a new method is proposed to deduce the posterior residual equation, and the HUP-Gaussian mixture model (HUP-GMM) is adopted to simplify the calculations. By maintaining the original hypothesis, since the posterior residual is known to follow a normal distribution, the posterior linear correlation equation can be directly assumed without prior and likelihood inferences. In particular, the complex Bayesian inference is replaced with simple linear equations. By converting the linear equation into the original space, we obtain a new method consisting of the HUP linear GMM (HUP-LG). In the study area, the parameters of the HUP-LG and HUP-GMM in the NQT space are calculated, and corresponding expressions of the probability density in the original space are obtained. The results reveal that the HUP-LG simplifies the calculation process in the NQT space, and attains the same performance as that of the HUP-GMM.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 11/2020

Water Resources Management 11/2020 Go to the issue