Skip to main content
Top

2024 | OriginalPaper | Chapter

A Lagrangian Program Detecting the Weighted Fermat-Steiner-Fréchet Multitree for a Fréchet N-multisimplex in Euclidean N-space

Author : Anastasios N. Zachos

Published in: Differential Geometric Structures and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce the Fermat-Steiner-Fréchet (FSFR) problem for a given \(\frac{1}{2} N(N+1)\)-tuple of positive real numbers determining the edge lengths of an N-simplex in \(\mathbb {R}^{N}\) in order to study its solution called the “FSFR multitree”, which consist of a union of Fermat-Steiner (FS) trees for all derived pairwise incongruent N-simplexes in the sense of Blumenthal, Herzog for \(N=3\) and Dekster-Wilker for \(N\ge 3\). We obtain a method to determine the FSFR multitree in \(\mathbb {R}^{N}\) based on the theory of Lagrange multipliers, whose equality constraints depend on \(N-1\) independent solutions of the inverse weighted Fermat problem for an N-simplex in \(\mathbb {R}^{N}\). A fundamental application of the Lagrangian program for the FSFR problem in \(\mathbb {R}^{N}\) is the detection of the FS tree with global minimum length having \(N-1\) equally weighted FS points among \(\frac{[\frac{1}{2} N(N+1)]!}{(N+1)!}\) incongruent N-simplexes determined by an \(\frac{1}{2} N(N+1)\)-tuple of consecutive natural numbers controlled by Dekster-Wilker, Blumenthal-Herzog conditions and enriched with the fundamental evolutionary processes of Nature (Minimum communication networks, minimum mass transfer, maximum volume of incongruent simplexes). Furthermore, we obtain the unique solution of the inverse weighted Fermat problem, referring to the unique set of \((N+1)\) weights, which correspond to the vertices of an N-boundary simplex in \(\mathbb {R}^{N}\). Additionally, we give a negative answer for an intermediate weighted Fermat-Steiner-Fréchet multitree having one node (weighted Fermat point) for m boundary closed polytopes (\(m\ge N+2\)), which is determined by m prescribed rays meeting at a fixed weighted Fermat point, by deriving a linear dependence for the m variable weights (Plasticity of an Intermediate FSFR multitree for m boundary closed polytopes). By entering in the plasticity of an intermediate FSFR multitree for m boundary closed polytopes a two-way mass transport from k vertices to the unique weighted Fermat point and from this point to the \(m-k\) vertices, and reversely, we derive the equations of “mutation” of intermediate FSFR multitrees in \(\mathbb {R}^{N}\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blumenthal L.M.: A budget of curiosa metrica, Amer. Math. Monthly, f66 : 6, (1959), 453–460 Blumenthal L.M.: A budget of curiosa metrica, Amer. Math. Monthly, f66 : 6, (1959), 453–460
2.
go back to reference Boltyanski V., Martini H., Soltan V.: Geometric methods and optimization problems, Kluwer, Dordrecht/Boston/London (1999)CrossRef Boltyanski V., Martini H., Soltan V.: Geometric methods and optimization problems, Kluwer, Dordrecht/Boston/London (1999)CrossRef
3.
go back to reference Cieslik D.: Steiner minimal trees. Nonconvex optimization and its applications, 23. Kluwer Academic Publishers, Dordrecht, 1998 Cieslik D.: Steiner minimal trees. Nonconvex optimization and its applications, 23. Kluwer Academic Publishers, Dordrecht, 1998
4.
go back to reference Courant R. Robbins H.: What is mathematics? An elementary approach to ideas and methods. New York, NY: Oxford University Press (1996)CrossRef Courant R. Robbins H.: What is mathematics? An elementary approach to ideas and methods. New York, NY: Oxford University Press (1996)CrossRef
8.
go back to reference Fréchet M.:, Sur la définition axiomatique d’une classe d’espaces vectoriels distancies applicables vectoriellement sur l’espace de Hilbert. Ann. Math. 36 (1935), 705–718MathSciNetCrossRef Fréchet M.:, Sur la définition axiomatique d’une classe d’espaces vectoriels distancies applicables vectoriellement sur l’espace de Hilbert. Ann. Math. 36 (1935), 705–718MathSciNetCrossRef
10.
12.
go back to reference Itô K., McKean H.P.: Diffusion processes and their sample paths, Repr. of the 1974 ed. Classics in Mathematics, Springer-Verlag, Berlin, (1974) Itô K., McKean H.P.: Diffusion processes and their sample paths, Repr. of the 1974 ed. Classics in Mathematics, Springer-Verlag, Berlin, (1974)
13.
go back to reference Ivanov A.O., Tuzhilin A.A.: Geometry of minimal networks and the one-dimensional Plateau problem. Russ. Math. Surv. 47 (1992), No. 2, 59–131CrossRef Ivanov A.O., Tuzhilin A.A.: Geometry of minimal networks and the one-dimensional Plateau problem. Russ. Math. Surv. 47 (1992), No. 2, 59–131CrossRef
14.
go back to reference Ivanov A.O., Tuzhilin A.A.: Minimal networks. The Steiner problem and its generalizations. CRC Press, Boca Raton, FL, 1994 Ivanov A.O., Tuzhilin A.A.: Minimal networks. The Steiner problem and its generalizations. CRC Press, Boca Raton, FL, 1994
15.
16.
go back to reference Ivanov A.O., Tuzhilin A.A.: Linear networks and convex polytopes. J. Math. Sci., New York 104 (2001), No. 4, 1283–1288. Ivanov A.O., Tuzhilin A.A.: Linear networks and convex polytopes. J. Math. Sci., New York 104 (2001), No. 4, 1283–1288.
17.
go back to reference Ivanov A.O., Tuzhilin A.A.: Branching solutions to one-dimensional variational problems. Singapore: World Scientific 2001CrossRef Ivanov A.O., Tuzhilin A.A.: Branching solutions to one-dimensional variational problems. Singapore: World Scientific 2001CrossRef
18.
go back to reference Jarník V., Kössler M.: Sur les graphes minima, contenant \(n\) points donnes. C̆as. Mat. Fys. 63, 223–235 Jarník V., Kössler M.: Sur les graphes minima, contenant \(n\) points donnes. C̆as. Mat. Fys. 63, 223–235
19.
go back to reference McKean H.P.: The Bessel motion and a singular integral equation, Mem. Coll. Sci., Univ. Kyoto, Ser. A 33 (1960), 317–322 McKean H.P.: The Bessel motion and a singular integral equation, Mem. Coll. Sci., Univ. Kyoto, Ser. A 33 (1960), 317–322
21.
go back to reference Rubinstein J. H., Thomas D. A. and Weng J.: Minimum networks for four Points in Space, Geom. Dedicata. 93 (2002), 57–70MathSciNetCrossRef Rubinstein J. H., Thomas D. A. and Weng J.: Minimum networks for four Points in Space, Geom. Dedicata. 93 (2002), 57–70MathSciNetCrossRef
22.
go back to reference Schläfli L.: Collected mathematical works. Vol. I. (Gesammelte mathematische Abhandlungen. Bd. I. Herausgegeben vom Steiner-Schläfli-Komitee der Schweizerischen Naturforschenden Gesellschaft.) German Basel: Birkhäuser Verlag, (1949) Schläfli L.: Collected mathematical works. Vol. I. (Gesammelte mathematische Abhandlungen. Bd. I. Herausgegeben vom Steiner-Schläfli-Komitee der Schweizerischen Naturforschenden Gesellschaft.) German Basel: Birkhäuser Verlag, (1949)
23.
go back to reference Sommerville D. M. Y.: An introduction to the geometry of \(n\)-dimensions. New York: Dover Publications, (1958) Sommerville D. M. Y.: An introduction to the geometry of \(n\)-dimensions. New York: Dover Publications, (1958)
24.
go back to reference Sturm R.: Ueber den punkt kleinster entfernungsumme von gegebenen punkten. J. Reine Angew. Math. XCVII (1884), 49–62CrossRef Sturm R.: Ueber den punkt kleinster entfernungsumme von gegebenen punkten. J. Reine Angew. Math. XCVII (1884), 49–62CrossRef
25.
go back to reference Uspensky J. V.: Theory of equations. New York, McGraw-Hill, (1948) Uspensky J. V.: Theory of equations. New York, McGraw-Hill, (1948)
26.
go back to reference Zachos A. and Zouzoulas G.: The weighted Fermat-Torricelli problem for tetrahedra and an “inverse” problem, J. Math. Anal. Appl. 353 1, (2009), 114–120MathSciNetCrossRef Zachos A. and Zouzoulas G.: The weighted Fermat-Torricelli problem for tetrahedra and an “inverse” problem, J. Math. Anal. Appl. 353 1, (2009), 114–120MathSciNetCrossRef
27.
go back to reference Zachos A.N.: The weighted Fermat-Torricelli-Menger problem for a given sextuple of edge lengths determining tetrahedra, J.Math. Chem. 54 7, (2016), 1447–1460MathSciNetCrossRef Zachos A.N.: The weighted Fermat-Torricelli-Menger problem for a given sextuple of edge lengths determining tetrahedra, J.Math. Chem. 54 7, (2016), 1447–1460MathSciNetCrossRef
28.
go back to reference Zachos A.N.: The plasticity of some mass transportation networks in the three-dimensional Euclidean space, J. Convex Anal., 27 (3), (2020), 989–1002MathSciNet Zachos A.N.: The plasticity of some mass transportation networks in the three-dimensional Euclidean space, J. Convex Anal., 27 (3), (2020), 989–1002MathSciNet
29.
go back to reference Zachos A.N.: An evolutionary design of weighted minimum networks for four points in the three-dimensional Euclidean space, Analysis (Munchen) 41:2, (2021), 79–112MathSciNetCrossRef Zachos A.N.: An evolutionary design of weighted minimum networks for four points in the three-dimensional Euclidean space, Analysis (Munchen) 41:2, (2021), 79–112MathSciNetCrossRef
Metadata
Title
A Lagrangian Program Detecting the Weighted Fermat-Steiner-Fréchet Multitree for a Fréchet N-multisimplex in Euclidean N-space
Author
Anastasios N. Zachos
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50586-7_16

Premium Partner