Skip to main content
Top
Published in: Journal of Scientific Computing 1/2016

28-03-2015

A Linearly Fourth Order Multirate Runge–Kutta Method with Error Control

Author: Pak-Wing Fok

Published in: Journal of Scientific Computing | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To integrate large systems of locally coupled ordinary differential equations with disparate timescales, we present a multirate method with error control that is based on the Cash–Karp Runge–Kutta formula. The order of multirate methods often depends on interpolating certain solution components with a polynomial of sufficiently high degree. By using cubic interpolants and analyzing the method applied to a simple test equation, we show that our method is fourth order linearly accurate overall. Furthermore, the size of the region of absolute stability is increased when taking many “micro-steps” within a “macro-step.” Finally, we demonstrate our method on three simple test problems to confirm fourth order convergence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We use the word “interpolation” to describe a method to construct a smooth approximation to the numerical solution between two times \(t_n\) and \(t_{n+1}\). However, the function that we derive does not pass through the numerical solution at \(t_{n+1}\). Strictly speaking, it is not an interpolant. Nevertheless, we still refer to these approximating functions as “interpolants.”
 
Literature
1.
go back to reference Andrus, J.F.: Numerical solution of systems of ordinary differential equations separated into subsystems. SIAM J. Numer. Anal. 16, 605–611 (1979)MathSciNetCrossRefMATH Andrus, J.F.: Numerical solution of systems of ordinary differential equations separated into subsystems. SIAM J. Numer. Anal. 16, 605–611 (1979)MathSciNetCrossRefMATH
2.
go back to reference Bartel, A., Günther, M.: A multirate W-method for electrical networks in state-space formulation. J. Comput. Appl. Math. 147(2), 411–425 (2002)MathSciNetCrossRefMATH Bartel, A., Günther, M.: A multirate W-method for electrical networks in state-space formulation. J. Comput. Appl. Math. 147(2), 411–425 (2002)MathSciNetCrossRefMATH
3.
go back to reference Bartel, A., Günther, M., Kvaerno, A.: Multirate methods in electrical circuit simulation. Prog. Ind. Math. ECMI 2000, 258–265 (2000) Bartel, A., Günther, M., Kvaerno, A.: Multirate methods in electrical circuit simulation. Prog. Ind. Math. ECMI 2000, 258–265 (2000)
4.
go back to reference Constantinescu, E.M., Sandu, A.: Extrapolated multirate methods for differential equations with multiple time scales. J. Sci. Comput. 56(1), 28–44 (2013) Constantinescu, E.M., Sandu, A.: Extrapolated multirate methods for differential equations with multiple time scales. J. Sci. Comput. 56(1), 28–44 (2013)
5.
go back to reference Constantinescu, E.M., Adrian, Sandu: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)MathSciNetCrossRefMATH Constantinescu, E.M., Adrian, Sandu: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)MathSciNetCrossRefMATH
6.
7.
go back to reference Enright, W.H., Jackson, K.R., Nørsett, S.P., Thomsen, P.G.: Interpolants for Runge–Kutta formulas. ACM Trans. Math. Softw. 12(3), 193–218 (1986)CrossRefMATH Enright, W.H., Jackson, K.R., Nørsett, S.P., Thomsen, P.G.: Interpolants for Runge–Kutta formulas. ACM Trans. Math. Softw. 12(3), 193–218 (1986)CrossRefMATH
10.
go back to reference Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics. Springer (1987) Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics. Springer (1987)
11.
go back to reference Horn, M.K.: Fourth and fifth order, scaled Runge–Kutta algorithms for treating dense output. SIAM J. Numer. Anal. 20(3), 558–568 (1983)MathSciNetCrossRefMATH Horn, M.K.: Fourth and fifth order, scaled Runge–Kutta algorithms for treating dense output. SIAM J. Numer. Anal. 20(3), 558–568 (1983)MathSciNetCrossRefMATH
12.
13.
go back to reference Kato, T., Kataoka, T.: Circuit analysis by a new multirate method. Electr. Eng. Jpn. 126(4), 1623–1628 (1999)CrossRef Kato, T., Kataoka, T.: Circuit analysis by a new multirate method. Electr. Eng. Jpn. 126(4), 1623–1628 (1999)CrossRef
15.
go back to reference Makino, J., Aarseth, S.: On a Hermite integrator with Ahmad-Cohen scheme for gravitational many-body problems. Publ. Astron. Soc. Japan 44, 141–151 (1992) Makino, J., Aarseth, S.: On a Hermite integrator with Ahmad-Cohen scheme for gravitational many-body problems. Publ. Astron. Soc. Japan 44, 141–151 (1992)
16.
go back to reference Press, W.H., Teukolsky, S.A., Vetterling, W.V., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992) Press, W.H., Teukolsky, S.A., Vetterling, W.V., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)
18.
go back to reference Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff ordinary differential equations. BIT 47, 137–155 (2007)MathSciNetCrossRefMATH Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff ordinary differential equations. BIT 47, 137–155 (2007)MathSciNetCrossRefMATH
20.
21.
go back to reference Waltz, J., Page, G.L., Milder, S.D., Wallin, J., Antunes, A.: A performance comparison of tree data structures for \({N}\)-body simulation. J. Comput. Phys. 178, 1–14 (2002)CrossRefMATH Waltz, J., Page, G.L., Milder, S.D., Wallin, J., Antunes, A.: A performance comparison of tree data structures for \({N}\)-body simulation. J. Comput. Phys. 178, 1–14 (2002)CrossRefMATH
Metadata
Title
A Linearly Fourth Order Multirate Runge–Kutta Method with Error Control
Author
Pak-Wing Fok
Publication date
28-03-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0017-4

Other articles of this Issue 1/2016

Journal of Scientific Computing 1/2016 Go to the issue

Premium Partner