Skip to main content
Top
Published in: Journal of Scientific Computing 1/2017

05-10-2016

A Locally Gradient-Preserving Reinitialization for Level Set Functions

Authors: Lei Li, Xiaoqian Xu, Saverio E. Spagnolie

Published in: Journal of Scientific Computing | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The level set method commonly requires a reinitialization of the level set function due to interface motion and deformation. We extend the traditional technique for reinitializing the level set function to a method that preserves the interface gradient. The gradient of the level set function represents the stretching of the interface, which is of critical importance in many physical applications. The proposed locally gradient-preserving reinitialization (LGPR) method involves the solution of three PDEs of Hamilton–Jacobi type in succession; first the signed distance function is found using a traditional reinitialization technique, then the interface gradient is extended into the domain by a transport equation, and finally the new level set function is found by solving a generalized reinitialization equation. We prove the well-posedness of the Hamilton–Jacobi equations, with possibly discontinuous Hamiltonians, and propose numerical schemes for their solutions. A subcell resolution technique is used in the numerical solution of the transport equation to extend data away from the interface directly with high accuracy. The reinitialization technique is computationally inexpensive if the PDEs are solved only in a small band surrounding the interface. As an important application, we show how the LGPR procedure can be used to make possible the local level set approach to the Eulerian Immersed boundary method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Aujol, J.F., Aubert, G.: Signed distance functions and viscosity solutions of discontinuous Hamilton–Jacobi equations. Technical Report RR-4507, INRIA (2002) Aujol, J.F., Aubert, G.: Signed distance functions and viscosity solutions of discontinuous Hamilton–Jacobi equations. Technical Report RR-4507, INRIA (2002)
3.
go back to reference Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)CrossRefMATH Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)CrossRefMATH
4.
go back to reference Bottino, D.C.: Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comput. Phys. 147, 86–113 (1998)CrossRefMATH Bottino, D.C.: Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comput. Phys. 147, 86–113 (1998)CrossRefMATH
5.
go back to reference Chang, Y.C., Hou, T.Y., Merriman, B., Osher, S.: A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449–464 (1996)MathSciNetCrossRefMATH Chang, Y.C., Hou, T.Y., Merriman, B., Osher, S.: A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449–464 (1996)MathSciNetCrossRefMATH
7.
go back to reference Chrispell, J.C., Cortez, R., Khismatullin, D.B., Fauci, L.J.: Shape oscillations of a droplet in an Oldroyd-B fluid. Phys. D 240(20), 1593–1601 (2011)CrossRefMATH Chrispell, J.C., Cortez, R., Khismatullin, D.B., Fauci, L.J.: Shape oscillations of a droplet in an Oldroyd-B fluid. Phys. D 240(20), 1593–1601 (2011)CrossRefMATH
8.
go back to reference Chrispell, J.C., Fauci, L.J., Shelley, M.: An actuated elastic sheet interacting with passive and active structures in a viscoelastic fluid. Phys. Fluids. 25(1), 013,103 (2013)CrossRefMATH Chrispell, J.C., Fauci, L.J., Shelley, M.: An actuated elastic sheet interacting with passive and active structures in a viscoelastic fluid. Phys. Fluids. 25(1), 013,103 (2013)CrossRefMATH
9.
go back to reference Cottet, G.H., Maitre, E.: A level-set formulation of immersed boundary methods for fluid–structure interaction problems. C. R. Acad. Sci. Paris 338, 581–586 (2004)MathSciNetCrossRefMATH Cottet, G.H., Maitre, E.: A level-set formulation of immersed boundary methods for fluid–structure interaction problems. C. R. Acad. Sci. Paris 338, 581–586 (2004)MathSciNetCrossRefMATH
10.
go back to reference Cottet, G.H., Maitre, E.: A level set method for fluid–structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16, 415–438 (2006)MathSciNetCrossRefMATH Cottet, G.H., Maitre, E.: A level set method for fluid–structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16, 415–438 (2006)MathSciNetCrossRefMATH
11.
go back to reference Cottet, G.H., Maitre, E.: Eulerian formulation and level set models for incompressible fluid–structure interaction. Math. Model Numer. Anal. 42, 471–492 (2008)MathSciNetCrossRefMATH Cottet, G.H., Maitre, E.: Eulerian formulation and level set models for incompressible fluid–structure interaction. Math. Model Numer. Anal. 42, 471–492 (2008)MathSciNetCrossRefMATH
12.
13.
14.
go back to reference Deckelnick, K., Elliott, C.M.: Uniqueness and error analysis for Hamilton–Jacobi equations with discontinuities. Interfaces Free Bound 6, 329–349 (2004)MathSciNetCrossRefMATH Deckelnick, K., Elliott, C.M.: Uniqueness and error analysis for Hamilton–Jacobi equations with discontinuities. Interfaces Free Bound 6, 329–349 (2004)MathSciNetCrossRefMATH
15.
go back to reference Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence, RI (2010) Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence, RI (2010)
16.
go back to reference Festa, A., Falcone, M.: An approximation scheme for an eikonal equation with discontinuous coefficient. SIAM J. Numer. Anal. 52(1), 236–257 (2014)MathSciNetCrossRefMATH Festa, A., Falcone, M.: An approximation scheme for an eikonal equation with discontinuous coefficient. SIAM J. Numer. Anal. 52(1), 236–257 (2014)MathSciNetCrossRefMATH
17.
go back to reference Guy, R.D., Thomases, B.: Computational challenges for simulating strongly elastic flows in biology. In: Spagnolie, S.E. (ed.) Complex Fluids in Biological Systems, pp. 359–397. Springer, New York (2015) Guy, R.D., Thomases, B.: Computational challenges for simulating strongly elastic flows in biology. In: Spagnolie, S.E. (ed.) Complex Fluids in Biological Systems, pp. 359–397. Springer, New York (2015)
19.
go back to reference Ishii, H.: Hamilton–Jacobi equations with discontinuous Hamiltonians on arbitrary open sets. Bull. Fac. Sci. Eng. Chuo Univ. 28, 33–77 (1985)MathSciNetMATH Ishii, H.: Hamilton–Jacobi equations with discontinuous Hamiltonians on arbitrary open sets. Bull. Fac. Sci. Eng. Chuo Univ. 28, 33–77 (1985)MathSciNetMATH
20.
go back to reference Ishii, H.: Existence and uniqueness of solutions of Hamilton–Jacobi equations. Funkc. Ekvacio 29, 167–188 (1986)MathSciNetMATH Ishii, H.: Existence and uniqueness of solutions of Hamilton–Jacobi equations. Funkc. Ekvacio 29, 167–188 (1986)MathSciNetMATH
21.
go back to reference Ishii, H.: A simple, direct proof of uniqueness for solutions of the Hamilton–Jacobi equations of Eikonal type. Proc. Am. Math. Soc. 100, 247–251 (1987)MathSciNetCrossRefMATH Ishii, H.: A simple, direct proof of uniqueness for solutions of the Hamilton–Jacobi equations of Eikonal type. Proc. Am. Math. Soc. 100, 247–251 (1987)MathSciNetCrossRefMATH
22.
go back to reference Jin, S., Liu, H.L., Osher, S., Tsai, R.: Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems. J. Comput. Phys. 210, 497–518 (2005)MathSciNetCrossRefMATH Jin, S., Liu, H.L., Osher, S., Tsai, R.: Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems. J. Comput. Phys. 210, 497–518 (2005)MathSciNetCrossRefMATH
23.
go back to reference Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)MathSciNetCrossRefMATH Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)MathSciNetCrossRefMATH
24.
go back to reference Koike, S.: A Beginner’s Guide to the Theory of Viscosity Solutions. Mathematical Society of Japan, Tokyo (2004) Koike, S.: A Beginner’s Guide to the Theory of Viscosity Solutions. Mathematical Society of Japan, Tokyo (2004)
25.
go back to reference Lai, M.C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 160, 705–719 (2000)MathSciNetCrossRefMATH Lai, M.C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 160, 705–719 (2000)MathSciNetCrossRefMATH
26.
go back to reference Li, Z., Zhao, H., Gao, H.: A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys. 201, 281–304 (1999)CrossRefMATH Li, Z., Zhao, H., Gao, H.: A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys. 201, 281–304 (1999)CrossRefMATH
27.
go back to reference Lieutier, A.: Any open bounded subset of \(R^n\) has the same homotopy type as its medial axis. Comput. Aided Des. 36(11), 1029–1046 (2004)CrossRef Lieutier, A.: Any open bounded subset of \(R^n\) has the same homotopy type as its medial axis. Comput. Aided Des. 36(11), 1029–1046 (2004)CrossRef
28.
go back to reference Lions, P.L.: Generalized Solutions of Hamilton–Jacobi Equations. Cambridge University Press, Cambridge (1992) Lions, P.L.: Generalized Solutions of Hamilton–Jacobi Equations. Cambridge University Press, Cambridge (1992)
29.
31.
go back to reference Mori, Y., Peskin, C.S.: Implicit second-order immersed boundary methods with boundary mass. Comput. Methods Appl. Mech. Eng. 197, 2049–2067 (2008)MathSciNetCrossRefMATH Mori, Y., Peskin, C.S.: Implicit second-order immersed boundary methods with boundary mass. Comput. Methods Appl. Mech. Eng. 197, 2049–2067 (2008)MathSciNetCrossRefMATH
32.
go back to reference Mushenheim, P.C., Pendery, J.S., Weibel, D.B., Spagnolie, S.E., Abbott, N.L.: Straining soft colloids in aqueous nematic liquid crystals. Proc. Natl. Acad. Sci. 113, 5564–5569 (2016)CrossRef Mushenheim, P.C., Pendery, J.S., Weibel, D.B., Spagnolie, S.E., Abbott, N.L.: Straining soft colloids in aqueous nematic liquid crystals. Proc. Natl. Acad. Sci. 113, 5564–5569 (2016)CrossRef
33.
go back to reference Newren, E.P., Fogelson, A.L., Guy, R.D., Kirby, R.M.: Unconditionally stable discretizations of the immersed boundary equations. J. Comput. Phys. 222, 702–719 (2007)MathSciNetCrossRefMATH Newren, E.P., Fogelson, A.L., Guy, R.D., Kirby, R.M.: Unconditionally stable discretizations of the immersed boundary equations. J. Comput. Phys. 222, 702–719 (2007)MathSciNetCrossRefMATH
35.
go back to reference Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetCrossRefMATH Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetCrossRefMATH
36.
go back to reference Osher, S., Shu, C.: Higher-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)MathSciNetCrossRefMATH Osher, S., Shu, C.: Higher-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)MathSciNetCrossRefMATH
37.
go back to reference Ostrov, D.N.: Extending viscosity solutions to Eikonal equations with discontinuous spatial dependence. Nonlinear Anal. 42, 709–736 (2000)MathSciNetCrossRefMATH Ostrov, D.N.: Extending viscosity solutions to Eikonal equations with discontinuous spatial dependence. Nonlinear Anal. 42, 709–736 (2000)MathSciNetCrossRefMATH
38.
go back to reference Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)MathSciNetCrossRefMATH Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)MathSciNetCrossRefMATH
40.
go back to reference Salac, D., Miksis, M.: A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230(22), 8192–8215 (2011)MathSciNetCrossRefMATH Salac, D., Miksis, M.: A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230(22), 8192–8215 (2011)MathSciNetCrossRefMATH
41.
42.
go back to reference Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)MATH Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)MATH
43.
go back to reference Soravia, P.: Optimal control with discontinuous running cost: Eikonal equation and shape-from-shading. In: Proceedings of 39th IEEE Conference on Decision and Control, 2000, vol 1, pp. 79–84. IEEE (2000) Soravia, P.: Optimal control with discontinuous running cost: Eikonal equation and shape-from-shading. In: Proceedings of 39th IEEE Conference on Decision and Control, 2000, vol 1, pp. 79–84. IEEE (2000)
44.
go back to reference Soravia, P.: Boundary value problems for Hamilton–Jacobi equations with discontinuous Lagrangian. Indiana Univ. Math. J. 51, 451–476 (2002)MathSciNetCrossRefMATH Soravia, P.: Boundary value problems for Hamilton–Jacobi equations with discontinuous Lagrangian. Indiana Univ. Math. J. 51, 451–476 (2002)MathSciNetCrossRefMATH
46.
go back to reference Strychalski, W., Copos, C.A., Lewis, O.L., Guy, R.D.: A poroelastic immersed boundary method with applications to cell biology. J. Comput. Phys. 282, 77–97 (2015)MathSciNetCrossRefMATH Strychalski, W., Copos, C.A., Lewis, O.L., Guy, R.D.: A poroelastic immersed boundary method with applications to cell biology. J. Comput. Phys. 282, 77–97 (2015)MathSciNetCrossRefMATH
47.
go back to reference Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)CrossRefMATH Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)CrossRefMATH
48.
go back to reference Teran, J., Fauci, L., Shelley, M.: Peristaltic pumping and irreversibility of a Stokesian viscoelastic fluid. Phys. Fluids 20(073), 101 (2008)MATH Teran, J., Fauci, L., Shelley, M.: Peristaltic pumping and irreversibility of a Stokesian viscoelastic fluid. Phys. Fluids 20(073), 101 (2008)MATH
49.
go back to reference Teran, J., Fauci, L., Shelley, M.: Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104(3), 038,101 (2010)CrossRef Teran, J., Fauci, L., Shelley, M.: Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104(3), 038,101 (2010)CrossRef
50.
go back to reference Thomases, B., Guy, R.D.: Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113(9), 098,102 (2014)CrossRef Thomases, B., Guy, R.D.: Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113(9), 098,102 (2014)CrossRef
51.
go back to reference Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)MathSciNetCrossRefMATH Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)MathSciNetCrossRefMATH
Metadata
Title
A Locally Gradient-Preserving Reinitialization for Level Set Functions
Authors
Lei Li
Xiaoqian Xu
Saverio E. Spagnolie
Publication date
05-10-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2017
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0299-1

Other articles of this Issue 1/2017

Journal of Scientific Computing 1/2017 Go to the issue

Premium Partner