Skip to main content
Top
Published in: Computational Mechanics 2/2019

27-06-2018 | Original Paper

A low order 3D virtual element formulation for finite elasto–plastic deformations

Authors: Blaž Hudobivnik, Fadi Aldakheel, Peter Wriggers

Published in: Computational Mechanics | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work addresses an efficient low order 3D virtual element method for elastic–plastic solids undergoing large deformations. Virtual elements were introduced in the last decade and applied to various problems in solid mechanics. The successful application of the method to non-linear problems such as finite strain elasticity and plasticity in 2D leads naturally to the question of its effectiveness and robustness in the third dimension. This work is concerned with the extensions of the virtual element method to problems of 3D finite strain plasticity. Low-order formulations for problems in three dimensions, with elements being arbitrary shaped polyhedra, are considered. The formulation is based on minimization of a pseudo energy expression, with a generalization of a stabilization techniques, introduced for two dimensional polygons, to the three-dimensional domain. The resulting discretization scheme is investigated using different numerical examples that demonstrate efficiency, accuracy and convergence properties. For comparison purposes, results of the standard finite element method are also demonstrated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160MathSciNetCrossRefMATH Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160MathSciNetCrossRefMATH
4.
go back to reference Belytschko T, Ong JS-J, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251–276CrossRefMATH Belytschko T, Ong JS-J, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251–276CrossRefMATH
5.
go back to reference Cangiani A, Manzini G, Russo A, Sukumar N (2015) Hourglass stabilization and the virtual element method. Int J Numer Methods Eng 102:404–436MathSciNetCrossRefMATH Cangiani A, Manzini G, Russo A, Sukumar N (2015) Hourglass stabilization and the virtual element method. Int J Numer Methods Eng 102:404–436MathSciNetCrossRefMATH
6.
go back to reference Beirão Da Veiga L, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327–346MathSciNetCrossRef Beirão Da Veiga L, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327–346MathSciNetCrossRef
8.
go back to reference Wriggers P, Reddy B, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60:253–268MathSciNetCrossRefMATH Wriggers P, Reddy B, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60:253–268MathSciNetCrossRefMATH
10.
go back to reference Wriggers P, Hudobivnik B, Schröder J (2017) Finite and virtual element formulations for large strain anisotropic material with inextensive fibers. In: Soric J, Wriggers P (eds) Multiscale modeling of heterogeneous structures. Springer, Cham Wriggers P, Hudobivnik B, Schröder J (2017) Finite and virtual element formulations for large strain anisotropic material with inextensive fibers. In: Soric J, Wriggers P (eds) Multiscale modeling of heterogeneous structures. Springer, Cham
11.
go back to reference Wriggers P, Hudobivnik B, Korelc J (2017) Efficient low order virtual elements for anisotropic materials at finite strains. In: Onate E, Peric D (eds) Advances in computational plasticity. Springer, Cham Wriggers P, Hudobivnik B, Korelc J (2017) Efficient low order virtual elements for anisotropic materials at finite strains. In: Onate E, Peric D (eds) Advances in computational plasticity. Springer, Cham
12.
go back to reference Aldakheel F, Hudobivnik B, Hussein A, Wriggers P (2018) Phase-field modeling of brittle fracture using an efficient virtual element scheme. Submitted to Computer Methods in Applied Mechanics and Engineering Aldakheel F, Hudobivnik B, Hussein A, Wriggers P (2018) Phase-field modeling of brittle fracture using an efficient virtual element scheme. Submitted to Computer Methods in Applied Mechanics and Engineering
13.
go back to reference Aldakheel F, Hudobivnik B, Wriggers P (2018) Virtual element formulation for phase-field modeling of ductile fracture. Submitted to International Journal for Multiscale Computational Engineering Aldakheel F, Hudobivnik B, Wriggers P (2018) Virtual element formulation for phase-field modeling of ductile fracture. Submitted to International Journal for Multiscale Computational Engineering
14.
go back to reference Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214MathSciNetCrossRefMATH Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214MathSciNetCrossRefMATH
15.
go back to reference Nadler B, Rubin M (2003) A new 3-d finite element for nonlinear elasticity using the theory of a cosserat point. Int J Solids Struct 40:4585–4614CrossRefMATH Nadler B, Rubin M (2003) A new 3-d finite element for nonlinear elasticity using the theory of a cosserat point. Int J Solids Struct 40:4585–4614CrossRefMATH
16.
go back to reference Boerner E, Loehnert S, Wriggers P (2007) A new finite element based on the theory of a cosserat point—extension to initially distorted elements for 2d plane strain. Int J Numer Methods Eng 71:454–472MathSciNetCrossRefMATH Boerner E, Loehnert S, Wriggers P (2007) A new finite element based on the theory of a cosserat point—extension to initially distorted elements for 2d plane strain. Int J Numer Methods Eng 71:454–472MathSciNetCrossRefMATH
17.
go back to reference Krysl P (2015) Mean-strain eight-node hexahedron with optimized energy-sampling stabilization for large-strain deformation. Int J Numer Methods Eng 103:650–670MathSciNetCrossRefMATH Krysl P (2015) Mean-strain eight-node hexahedron with optimized energy-sampling stabilization for large-strain deformation. Int J Numer Methods Eng 103:650–670MathSciNetCrossRefMATH
18.
go back to reference Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH
19.
20.
go back to reference Korelc J, Stupkiewicz S (2014) Closed-form matrix exponential and its application in finite-strain plasticity. Int J Numer Methods Eng 98:960–987MathSciNetCrossRefMATH Korelc J, Stupkiewicz S (2014) Closed-form matrix exponential and its application in finite-strain plasticity. Int J Numer Methods Eng 98:960–987MathSciNetCrossRefMATH
21.
go back to reference Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41–104CrossRefMATH Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41–104CrossRefMATH
22.
go back to reference Artioli E, Veiga LBD, Lovadina C, Sacco E (2017) Arbitrary order 2d virtual elements for polygonal meshes: part ii, inelastic problem. Comput Mech 60:643–657MathSciNetCrossRefMATH Artioli E, Veiga LBD, Lovadina C, Sacco E (2017) Arbitrary order 2d virtual elements for polygonal meshes: part ii, inelastic problem. Comput Mech 60:643–657MathSciNetCrossRefMATH
23.
go back to reference Artioli E, Veiga LBD, Lovadina C, Sacco E (2017) Arbitrary order 2d virtual elements for polygonal meshes: part i, elastic problem. Comput Mech 60:355–377MathSciNetCrossRefMATH Artioli E, Veiga LBD, Lovadina C, Sacco E (2017) Arbitrary order 2d virtual elements for polygonal meshes: part i, elastic problem. Comput Mech 60:355–377MathSciNetCrossRefMATH
24.
go back to reference Flanagan D, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hour-glass control. Int J Numer Methods Eng 17:679–706CrossRefMATH Flanagan D, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hour-glass control. Int J Numer Methods Eng 17:679–706CrossRefMATH
25.
go back to reference Belytschko T, Bindeman LP (1991) Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput Methods Appl Mech Eng 88(3):311–340MathSciNetCrossRefMATH Belytschko T, Bindeman LP (1991) Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput Methods Appl Mech Eng 88(3):311–340MathSciNetCrossRefMATH
26.
go back to reference Reese S, Kuessner M, Reddy BD (1999) A new stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 44:1617–1652CrossRef Reese S, Kuessner M, Reddy BD (1999) A new stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 44:1617–1652CrossRef
27.
go back to reference Reese S, Wriggers P (2000) A new stabilization concept for finite elements in large deformation problems. Int J Numer Methods Eng 48:79–110CrossRefMATH Reese S, Wriggers P (2000) A new stabilization concept for finite elements in large deformation problems. Int J Numer Methods Eng 48:79–110CrossRefMATH
28.
go back to reference Reese S (2003) On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int J Numer Methods Eng 57:1095–1127CrossRefMATH Reese S (2003) On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int J Numer Methods Eng 57:1095–1127CrossRefMATH
29.
go back to reference Mueller-Hoeppe DS, Loehnert S, Wriggers P (2009) A finite deformation brick element with inhomogeneous mode enhancement. Int J Numer Methods Eng 78:1164–1187MathSciNetCrossRefMATH Mueller-Hoeppe DS, Loehnert S, Wriggers P (2009) A finite deformation brick element with inhomogeneous mode enhancement. Int J Numer Methods Eng 78:1164–1187MathSciNetCrossRefMATH
30.
go back to reference Korelc J, Solinc U, Wriggers P (2010) An improved EAS brick element for finite deformation. Comput Mech 46:641–659CrossRefMATH Korelc J, Solinc U, Wriggers P (2010) An improved EAS brick element for finite deformation. Comput Mech 46:641–659CrossRefMATH
31.
go back to reference Krysl P (2015) Mean-strain eight-node hexahedron with stabilization by energy sampling stabilization. Int J Numer Methods Eng 103:437–449MathSciNetCrossRefMATH Krysl P (2015) Mean-strain eight-node hexahedron with stabilization by energy sampling stabilization. Int J Numer Methods Eng 103:437–449MathSciNetCrossRefMATH
32.
go back to reference Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York, BerlinMATH Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York, BerlinMATH
33.
go back to reference de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity, theory and applications. Wiley, ChichesterCrossRef de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity, theory and applications. Wiley, ChichesterCrossRef
34.
go back to reference Krysl P (2016) Mean-strain 8-node hexahedron with optimized energy-sampling stabilization. Finite Elem Anal Des 108:41–53MathSciNetCrossRef Krysl P (2016) Mean-strain 8-node hexahedron with optimized energy-sampling stabilization. Finite Elem Anal Des 108:41–53MathSciNetCrossRef
35.
go back to reference Loehnert S, Boerner E, Rubin M, Wriggers P (2005) Response of a nonlinear elastic general cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput Mech 36:255–265CrossRefMATH Loehnert S, Boerner E, Rubin M, Wriggers P (2005) Response of a nonlinear elastic general cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput Mech 36:255–265CrossRefMATH
37.
go back to reference Simo JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: computational aspects. Comput Methods Appl Mech Eng 68:1–31CrossRefMATH Simo JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: computational aspects. Comput Methods Appl Mech Eng 68:1–31CrossRefMATH
38.
go back to reference Hallquist JO (1984) Nike 2D: an implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids. Rept. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore Hallquist JO (1984) Nike 2D: an implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids. Rept. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore
39.
go back to reference Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208MathSciNetCrossRefMATH Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208MathSciNetCrossRefMATH
40.
go back to reference Miehe C, Welschinger F, Aldakheel F (2014) Variational gradient plasticity at finite strains. Part II: local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput Methods Appl Mech Eng 268:704–734MathSciNetCrossRefMATH Miehe C, Welschinger F, Aldakheel F (2014) Variational gradient plasticity at finite strains. Part II: local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput Methods Appl Mech Eng 268:704–734MathSciNetCrossRefMATH
42.
go back to reference Aldakheel F, Miehe C (2017) Coupled thermomechanical response of gradient plasticity. Int J Plast 91:1–24CrossRef Aldakheel F, Miehe C (2017) Coupled thermomechanical response of gradient plasticity. Int J Plast 91:1–24CrossRef
43.
go back to reference Aldakheel F (2017) Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space. Continuum Mech Thermodyn 29(6):1207–1217MathSciNetCrossRefMATH Aldakheel F (2017) Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space. Continuum Mech Thermodyn 29(6):1207–1217MathSciNetCrossRefMATH
44.
go back to reference Quey R, Dawson P, Barbe F (2011) Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing. Comput Methods Appl Mech Eng 200(17):1729–1745CrossRefMATH Quey R, Dawson P, Barbe F (2011) Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing. Comput Methods Appl Mech Eng 200(17):1729–1745CrossRefMATH
45.
go back to reference Swift H (1947) Length changes in metals under torsional overstrain. Engineering 163:253–257 Swift H (1947) Length changes in metals under torsional overstrain. Engineering 163:253–257
46.
go back to reference Hatada N, Ueno K, Ueda M, Watanabe S, Kinoshita N (1992) Three-dimensional elastic–plastic fem analysis on torsion of square-section bars. CIRP Ann Manuf Technol 41(1):303–306CrossRef Hatada N, Ueno K, Ueda M, Watanabe S, Kinoshita N (1992) Three-dimensional elastic–plastic fem analysis on torsion of square-section bars. CIRP Ann Manuf Technol 41(1):303–306CrossRef
Metadata
Title
A low order 3D virtual element formulation for finite elasto–plastic deformations
Authors
Blaž Hudobivnik
Fadi Aldakheel
Peter Wriggers
Publication date
27-06-2018
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 2/2019
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1593-6

Other articles of this Issue 2/2019

Computational Mechanics 2/2019 Go to the issue